RESUMEN
Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (H3/IDH-wt-pHGG) is a newly defined entity amongst brain tumours, primarily reported in children. It is a rare, ill-defined type of tumour and the only method to diagnose it is DNA methylation profiling. The case we report here carries new knowledge about this tumour which may, in fact, occur in elderly patients, be devoid of evocative genomic abnormalities reported in children and harbour a misleading mutation.
Asunto(s)
Neoplasias Encefálicas , Glioma , Sustancia Blanca , Anciano , Femenino , Humanos , Niño , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Genómica , Lóbulo Occipital/diagnóstico por imagenRESUMEN
AIM: Rosette-forming glioneuronal tumour (RGNT) is a rare central nervous system (CNS) World Health Organization (WHO) grade 1 brain neoplasm. According to the WHO 2021, essential diagnostic criteria are a 'biphasic histomorphology with neurocytic and a glial component, and uniform neurocytes forming rosettes and/or perivascular pseudorosettes associated with synaptophysin expression' and/or DNA methylation profile of RGNT whereas 'FGFR1 mutation with co-occurring PIK3CA and/or NF1 mutation' are desirable criteria. MATERIAL AND METHODS: We report a series of 46 cases fulfilling the essential pathological diagnostic criteria for RGNT. FGFR1 and PIK3CA hotspot mutations were searched for by multiplexed digital PCR in all cases, whereas DNA methylation profiling and/or PIK3R1 and NF1 alterations were analysed in a subset of cases. RESULTS: Three groups were observed. The first one included 21 intracranial midline tumours demonstrating FGFR1 mutation associated with PIK3CA or PIK3R1 (n = 19) or NF1 (n = 1) or PIK3CA and NF1 (n = 1) mutation. By DNA methylation profiling, eight cases were classified as RGNT (they demonstrated FGFR1 and PIK3CA or PIK3R1 mutations). Group 2 comprised 11 cases associated with one single FGFR1 mutation. Group 3 included six cases classified as low-grade glioma (LGG) other than RGNT (one-sixth showed FGFR1 mutation and one a FGFR1 and NF1 mutation) and eight cases without FGFR1 mutation. Groups 2 and 3 were enriched in lateral and spinal cases. CONCLUSIONS: We suggest adding FGFR1 mutation and intracranial midline location as essential diagnostic criteria. When DNA methylation profiling is not available, a RGNT diagnosis remains certain in cases demonstrating characteristic pathological features and FGFR1 mutation associated with either PIK3CA or PIK3R1 mutation.
Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias Neuroepiteliales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Glioma/genética , Glioma/patología , Humanos , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genéticaRESUMEN
BACKGROUND & AIMS: Colibactin-producing Escherichia coli (CoPEC) colonize the colonic mucosa of a higher proportion of patients with vs without colorectal cancer (CRC) and promote colorectal carcinogenesis in susceptible mouse models of CRC. Autophagy degrades cytoplasmic contents, including intracellular pathogens, via lysosomes and regulates intestinal homeostasis. We investigated whether inhibiting autophagy affects colorectal carcinogenesis in susceptible mice infected with CoPEC. METHODS: Human intestinal epithelial cells (IECs) (HCT-116) were infected with a strain of CoPEC (11G5 strain) isolated from a patient or a mutant strain that does not produce colibactin (11G5ΔclbQ). Levels of ATG5, ATG16L1, and SQSTM1 (also called p62) were knocked down in HCT-116 cells using small interfering RNAs. ApcMin/+ mice and ApcMin/+ mice with IEC-specific disruption of Atg16l1 (ApcMin/+/Atg16l1ΔIEC) were infected with 11G5 or 11G5ΔclbQ. Colonic tissues were collected from mice and analyzed for tumor size and number and by immunohistochemical staining, immunoblot, and quantitative reverse transcription polymerase chain reaction for markers of autophagy, DNA damage, cell proliferation, and inflammation. We analyzed levels of messenger RNAs (mRNAs) encoding proteins involved in autophagy in colonic mucosal tissues from patients with sporadic CRC colonized with vs without CoPEC by quantitative reverse-transcription polymerase chain reaction. RESULTS: Patient colonic mucosa with CoPEC colonization had higher levels of mRNAs encoding proteins involved in autophagy than colonic mucosa without these bacteria. Infection of cultured IECs with 11G5 induced autophagy and DNA damage repair, whereas infection with 11G5ΔclbQ did not. Knockdown of ATG5 in HCT-116 cells increased numbers of intracellular 11G5, secretion of interleukin (IL) 6 and IL8, and markers of DNA double-strand breaks but reduced markers of DNA repair, indicating that autophagy is required for bacteria-induced DNA damage repair. Knockdown of ATG5 in HCT-116 cells increased 11G5-induced senescence, promoting proliferation of uninfected cells. Under uninfected condition, ApcMin/+/Atg16l1ΔIEC mice developed fewer and smaller colon tumors than ApcMin/+ mice. However, after infection with 11G5, ApcMin/+/Atg16l1ΔIEC mice developed more and larger tumors, with a significant increase in mean histologic score, than infected ApcMin/+ mice. Increased levels of Il6, Tnf, and Cxcl1 mRNAs, decreased level of Il10 mRNA, and increased markers of DNA double-strand breaks and proliferation were observed in the colonic mucosa of 11G5-infected ApcMin/+/Atg16l1ΔIEC mice vs 11G5-infected ApcMin/+ mice. CONCLUSION: Infection of IECs and susceptible mice with CoPEC promotes autophagy, which is required to prevent colorectal tumorigenesis. Loss of ATG16L1 from IECs increases markers of inflammation, DNA damage, and cell proliferation and increases colorectal tumorigenesis in 11G5-infected ApcMin/+ mice. These findings indicate the importance of autophagy in response to CoPEC infection, and strategies to induce autophagy might be developed for patients with CRC and CoPEC colonization.
Asunto(s)
Autofagia , Carcinogénesis/inmunología , Colon/microbiología , Neoplasias del Colon/inmunología , Mucosa Intestinal/microbiología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinogénesis/efectos de los fármacos , Proliferación Celular , Colon/inmunología , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Escherichia coli/inmunología , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HeLa , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , Péptidos/toxicidad , Policétidos/toxicidad , ARN Interferente Pequeño/metabolismoRESUMEN
Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Proteínas Represoras/genética , Biomarcadores de Tumor/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Fusión de Oncogenes , Proteínas de Fusión Oncogénica/genéticaRESUMEN
Somatic mutations in TEK, the gene encoding endothelial cell tyrosine kinase receptor TIE2, cause more than half of sporadically occurring unifocal venous malformations (VMs). Here, we report that somatic mutations in PIK3CA, the gene encoding the catalytic p110α subunit of PI3K, cause 54% (27 out of 50) of VMs with no detected TEK mutation. The hotspot mutations c.1624G>A, c.1633G>A, and c.3140A>G (p.Glu542Lys, p.Glu545Lys, and p.His1047Arg), frequent in PIK3CA-associated cancers, overgrowth syndromes, and lymphatic malformation (LM), account for >92% of individuals who carry mutations. Like VM-causative mutations in TEK, the PIK3CA mutations cause chronic activation of AKT, dysregulation of certain important angiogenic factors, and abnormal endothelial cell morphology when expressed in human umbilical vein endothelial cells (HUVECs). The p110α-specific inhibitor BYL719 restores all abnormal phenotypes tested, in PIK3CA- as well as TEK-mutant HUVECs, demonstrating that they operate via the same pathogenic pathways. Nevertheless, significant genotype-phenotype correlations in lesion localization and histology are observed between individuals with mutations in PIK3CA versus TEK, pointing to gene-specific effects.
Asunto(s)
Mutación , Neovascularización Patológica/genética , Fosfatidilinositol 3-Quinasas/genética , Malformaciones Vasculares/genética , Alelos , Fosfatidilinositol 3-Quinasa Clase I , Regulación de la Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Neovascularización Patológica/enzimología , Neovascularización Patológica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Receptor TIE-2/antagonistas & inhibidores , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transducción de Señal , Tiazoles/farmacología , Transfección , Malformaciones Vasculares/enzimología , Malformaciones Vasculares/patología , Venas/enzimología , Venas/patologíaRESUMEN
Human malignant gliomas exhibit acquisition of either one of two telomere maintenance mechanisms, resulting from either reactivation of telomerase expression or activation of an alternative lengthening of telomeres (ALT) mechanism. In the present study, we analyzed 63 human malignant gliomas for the presence of ALT-specific extrachromosomal circles of telomeric DNA (C-circles) and measured telomerase expression, telomeric DNA content (Telo/Alu method), and telomeric repeat-containing RNAs (TERRA) levels. We also assessed histomolecular markers routinely used in clinical practice. The presence of C-circles significantly correlated with IDH1/2 mutation, MGMT exon 1 methylation, low Ki-67 immunostaining, increased telomeric DNA content, absence of functional ATRX protein and level of HTERT gene expression. In multivariate analysis, we observed a trend to a correlation between elevated TERRA levels and increased survival. Interestingly, the C-circles assay allowed to detect ALT activation in glioblastomas exhibiting wild-type IDH1/2 and ATRX expression. These results suggest that, after the correlations uncovered here have been confirmed on larger numbers of tumors, telomeric markers might be useful in improving diagnosis. They also point out to the utility of using the specific, sensitive and quantitative C-circle and Telo/Alu assays that can work with as few as 30 ng of tumor DNA.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Homeostasis del Telómero , Adulto , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Estudios de Cohortes , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Glioma/genética , Glioma/patología , Glioma/cirugía , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Clasificación del Tumor , ARN/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismoRESUMEN
Congenital limb anomalies occur in Europe with a prevalence of 3.81/1,000 births and can have a major impact on patients and their families. The present study concerned a female fetus aborted at 23 weeks of gestation because she was affected by non-syndromic bilateral absence of the zeugopod (leg) and autopod (foot). Autopsy of the aborted fetus, X-ray imaging, MRI, and histochemical analysis showed that the distal extremity of both femurs was continued by a cartilage-like mass, without joint cavitation. Karyotype was normal. Moreover, no damaging variant was detected by exome sequencing. The limb characteristics of the fetus, which to our knowledge have not yet been reported in humans, suggest a developmental arrest similar to anomalies described in chicks following surgical experiments on the apical ectodermal ridge of the lower limbs.
Asunto(s)
Feto/anomalías , Feto/patología , Articulación de la Rodilla/anomalías , Deformidades Congénitas de las Extremidades/patología , Extremidad Inferior/patología , Adulto , Femenino , Humanos , Articulación de la Rodilla/patología , Extremidad Inferior/crecimiento & desarrollo , Masculino , PronósticoRESUMEN
Mutations in the endothelial cell (EC) tyrosine kinase receptor TIE2 cause inherited and sporadic forms of venous malformation. The recurrent somatic mutation L914F and common germline mutation R849W differ in terms of phosphorylation level, as well as sub-cellular localization and trafficking of the receptor. Previous studies have shed light on certain pathogenic properties of R849W, but the mechanisms of action of L914F are unknown. We used global gene expression profiling to study the effects of L914F on ECs. We found that L914F strongly dysregulates genes involved in vascular development, cell migration and extracellular matrix processing, while R849W has weak effects. We also demonstrate, for the first time, that TIE2-mutant ECs are deficient in the production of PDGFB, both in vitro and ex vivo in patient tissues. This defect is mediated by the chronic, ligand-independent activation of AKT by the mutant receptors. Inadequate secretion of the major mural cell attractant likely plays an important role in the development of abnormal vascular channels, contributing to the characteristic paucity of surrounding vascular smooth muscle cells.
Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Malformaciones Vasculares/genética , Malformaciones Vasculares/metabolismo , Movimiento Celular/genética , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Mutación de Línea Germinal , Humanos , Músculo Liso Vascular/metabolismo , Fosforilación , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
Diagnosis of paediatric tumours of the central nervous system is often difficult because WHO classification criteria are mainly defined for adults tumours and do not always apply to their paediatric counterparts. These tumours are rare (400 cases/year among more than 50 pathological subtypes per year in France). Pathological diagnosis may be a challenge for a general pathologist with a too low number of paediatric cases in his recruitment. Hence, a reference group of paediatric neuropathologists was formed (GENOP) on the behalf of the comité "Tumeurs Cérébrales" de la Société Française de lutte contre les Cancers de l'Enfant. This network is supported by the Institut National du Cancer (INCa). GENOP aim is to structure a centralised review of paediatric central nervous system tumours in order to harmonise neuropathological diagnosis at the national level and enhance patients care. Cases assessed during the last 3 years led GENOP to better identify tumours subtypes for which there is a diagnostic challenge. A set of immunohistochemical or molecular specialised techniques was developed, leading to an increased diagnostic accuracy. It allowed a better distinction between diffuse and circumscribed glioma, a better recognition of glioneuronal differentiation and a better subtyping of embryonal tumours such as medulloblastomas. Inter-observer agreement varied according to the tumour subtypes.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/patología , Niño , Francia , Humanos , Oncología Médica , Sistemas Multiinstitucionales , Pediatría , Sociedades MédicasRESUMEN
Escherichia coli strains producing the genotoxin colibactin, designated as CoPEC (colibactin-producing E. coli), have emerged as an important player in the etiology of colorectal cancer (CRC). Here, we investigated the role of macroautophagy/autophagy in myeloid cells, an important component of the tumor microenvironment, in the tumorigenesis of a susceptible mouse model infected with CoPEC. For that, a preclinical mouse model of CRC, the ApcMin/+ mice, with Atg16l1 deficiency specifically in myeloid cells (ApcMin/+/Atg16l1[∆MC]) and the corresponding control mice (ApcMin/+), were infected with a clinical CoPEC strain 11G5 or its isogenic mutant 11G5∆clbQ that does not produce colibactin. We showed that myeloid cell-specific Atg16l1 deficiency led to an increase in the volume of colonic tumors in ApcMin/+ mice under infection with 11G5, but not with 11G5∆clbQ. This was accompanied by increased colonocyte proliferation, enhanced inflammasome activation and IL1B/IL-1ß secretion, increased neutrophil number and decreased total T cell and cytotoxic CD8+ T cell numbers in the colonic mucosa and tumors. In bone marrow-derived macrophages (BMDMs), compared to uninfected and 11G5∆clbQ-infected conditions, 11G5 infection increased inflammasome activation and IL1B secretion, and this was further enhanced by autophagy deficiency. These data indicate that ATG16L1 in myeloid cells was necessary to inhibit colonic tumor growth in CoPEC-infected ApcMin/+ mice via inhibiting colibactin-induced inflammasome activation and modulating immune cell response in the tumor microenvironment. Abbreviation: AOM, azoxymethane; APC, APC regulator of WNT signaling pathway; ATG, autophagy related; Atg16l1[∆MC] mice, mice deficient for Atg16l1 specifically in myeloid cells; CASP1, caspase 1; BMDM, bone marrow-derived macrophage; CFU, colony-forming unit; CoPEC, colibactin-producing Escherichia coli; CRC, colorectal cancer; CXCL1/KC, C-X-C motif chemokine ligand 1; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MC, myeloid cell; MOI, multiplicity of infection; PBS, phosphate-buffered saline; pks, polyketide synthase; qRT-PCR, quantitative real-time reverse-transcription polymerase chain reaction; siRNA, small interfering RNA; TME, tumor microenvironment; TNF/TNF-α, tumor necrosis factor.
Asunto(s)
Proteínas Relacionadas con la Autofagia , Neoplasias Colorrectales , Escherichia coli , Inflamasomas , Células Mieloides , Péptidos , Policétidos , Animales , Policétidos/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Inflamasomas/metabolismo , Ratones , Péptidos/metabolismo , Células Mieloides/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/metabolismo , Ratones Endogámicos C57BL , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proliferación Celular , Microambiente Tumoral/inmunologíaRESUMEN
Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.
Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Péptidos , Policétidos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Microambiente Tumoral , Resistencia a Antineoplásicos , Mutágenos/metabolismo , Recurrencia Local de Neoplasia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Policétidos/metabolismo , LípidosRESUMEN
CIC fusions have been described in two different central nervous system (CNS) tumor entities. On one hand, fusions of CIC or ATXN1 genes belonging to the same complex of transcriptional repressors, were reported in the CIC-rearranged, sarcoma (SARC-CIC). The diagnosis of this tumor type, which was recently added to the World Health Organization (WHO) Classification of CNS tumors, is difficult mainly because the data concerning its histopathology (as compared to its soft tissue counterpart), immunoprofile, and clinical as well as radiological characteristics are scarce in the literature. On the other hand, a recent study, based on DNA-methylation profiling, has identified a novel high-grade neuroepithelial tumor characterized by recurrent CIC fusions (HGNET-CIC). The aim of this multicentric study was to characterize a cohort of 15 primary CNS tumors harboring a CIC or ATXN1 fusion in terms of clinical, radiological, histopathological, immunophenotypical, and epigenetic characteristics. According to the integrated diagnoses, 14/15 tumors corresponded to SARC-CIC, and only one to HGNET-CIC. The tumors showed similar clinical (mainly pediatric), radiological (mostly supratentorial, cystic, and contrast enhancing), immunophenotypical (common expression of glioneuronal markers), and genetic (similar spectrum of fusions) profiles but their histopathological appearance was clearly distinct. Moreover, we found a novel fusion transcript (CIC::EWSR1) in a SARC-CIC. Most DNA methylation profiles using the Heidelberg Brain Tumor Classifier (v12.8) annotated the samples to the methylation class "SARC-CIC" (9/14 tumors with available data). By using uniform manifold approximation and projection analysis, four other samples were classified as SARC-CIC and another clustered within the methylation class of HGNET-CIC. Our findings confirm that CNS CIC-fused tumors do not represent a single molecular tumor entity. Further analyses are needed to characterize HGNET-CIC in more detail. These results may help to refine the essential diagnostic criteria for SARC-CIC and their terminology (with a suggested consensual name of sarcoma, CIC/ATXN1-complex rearranged).
RESUMEN
Pyogenic granuloma, also called lobular capillary hemangioma, is a condition usually occurring in skin or mucosa and often related to prior local trauma or pregnancy. However, the etiopathogenesis of pyogenic granuloma is poorly understood and whether pyogenic granuloma being a reactive process or a tumor is unknown. In an attempt to clarify this issue, we performed genome-wide transcriptional profiling of laser-captured vessels from pyogenic granuloma and from a richly vascularized tissue, placenta, as well as, from proliferative and involutive hemangiomas. Our study identified a gene signature specific to pyogenic granuloma. In the serial analysis of gene expression (SAGE) database, this signature was linked to 'white blood cells monocytes'. It also demonstrated high enrichment for gene ontology terms corresponding to 'vasculature development' and 'regulation of blood pressure'. This signature included genes of the nitric oxide pathway alongside genes related to hypoxia-induced angiogenesis and vascular injury, three conditions biologically interconnected. Finally, one of the genes specifically associated with pyogenic granuloma was FLT4, a tyrosine-kinase receptor related to pathological angiogenesis. All together, these data advocate for pyogenic granuloma to be a reactive lesion resulting from tissue injury, followed by an impaired wound healing response, during which vascular growth is driven by FLT4 and the nitric oxide pathway.
Asunto(s)
Granuloma Piogénico/genética , Neovascularización Patológica/genética , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Enfermedades Vasculares/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Capilares/metabolismo , Capilares/patología , Femenino , Expresión Génica , Granuloma Piogénico/metabolismo , Granuloma Piogénico/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Placenta/metabolismo , Placenta/patología , Embarazo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de HeridasRESUMEN
Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox-Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas Munc18/genética , Mutación/genética , Convulsiones/genética , Convulsiones/cirugía , Espasmos Infantiles/genética , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , Electroencefalografía , Femenino , Humanos , Lactante , Masculino , Fosfopiruvato Hidratasa/metabolismo , Convulsiones/etiología , Convulsiones/patología , Espasmos Infantiles/complicaciones , Adulto JovenRESUMEN
Most of our knowledge regarding glioma cell biology comes from cell culture experiments. For many years the standards for glioma cell culture were the use of cell lines cultured in the presence of serum and 20 % O2. However, in vivo, normoxia in many brain areas is in close to 3 % O2. Hence, in cell culture, the experimental value referred as the norm is hyperoxic compared to any brain physiological value. Likewise, cells in vivo are not usually exposed to serum, and low-passaged glioma neurosphere cultures maintained in serum-free medium is emerging as a new standard. A consequence of changing the experimental normoxic standard from 20 % O2 to the more brain physiological value of 3 % O2, is that a 3 % O2 normoxic reference point enabled a more rigorous characterization of the level of regulation of genes by hypoxia. Among the glioma hypoxia-regulated genes characterized using this approach we found VE-cadherin that is required for blood vessel formation, and filamin B a gene involved in endothelial cell motility. Both VE-cadherin and filamin B were found expressed in pseudopalisades, a glioblastoma pathognomonic structure made of hypoxic migrating cancer cells. These results provide additional clues on the role played by hypoxia in the acquisition of endothelial traits by glioma cells and on the functional links existing between pseudopalisades, hypoxia, and tumor progression.
Asunto(s)
Antígenos CD/metabolismo , Neoplasias Encefálicas/patología , Cadherinas/metabolismo , Endotelio Vascular/patología , Filaminas/metabolismo , Glioma/patología , Hipoxia/patología , Antígenos CD/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Cadherinas/genética , Movimiento Celular , Proliferación Celular , Endotelio Vascular/metabolismo , Filaminas/genética , Perfilación de la Expresión Génica , Glioma/etiología , Glioma/metabolismo , Humanos , Hipoxia/complicaciones , Técnicas para Inmunoenzimas , Necrosis , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales CultivadasRESUMEN
Colorectal cancer (CRC) patients are frequently colonized by colibactin-producing Escherichia coli (CoPEC) (>40%), which enhances tumorigenesis in mouse models of CRC. We observed that 50% of CoPEC also contains the cnf1 gene, which encodes cytotoxic necrotizing factor-1 (CNF1), an enhancer of the eukaryotic cell cycle. The impact of its co-occurrence with colibactin (Clb) has not yet been investigated. We evaluated the impact of CNF1 on colorectal tumorigenesis using human colonic epithelial HT-29 cells and CRC-susceptible ApcMin/+ mice inoculated with the CoPEC 21F8 clinical strain (Clb+Cnf+) or 21F8 isogenic mutants (Clb+Cnf-, Clb-Cnf+ and Clb-Cnf-). Infection with the Clb+Cnf- strain induced higher levels of inflammatory cytokines and senescence markers both in vitro and in vivo compared to those induced by infection with the Clb+Cnf+ strain. In contrast, the Clb+Cnf- and Clb+Cnf+ strains generated similar levels of DNA damage in HT-29 cells and in colonic murine tissues. Furthermore, the ApcMin/+ mice inoculated with the Clb+Cnf- strain developed significantly more tumors than the mice inoculated with the Clb+Cnf+ strain or the isogenic mutants, and the composition of their microbiota was changed. Finally, rectal administration of the CNF1 protein in ApcMin/+ mice inoculated with the Clb+Cnf- strain significantly decreased tumorigenesis and inflammation. Overall, this study provides evidence that CNF1 decreases the carcinogenic effects of CoPEC in ApcMin/+ mice by decreasing CoPEC-induced cellular senescence and inflammation.
Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Ratones , Humanos , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colon , Carcinogénesis , Transformación Celular Neoplásica , InflamaciónRESUMEN
No reliable classification is in clinical use for the therapeutic stratification of children with ependymoma, such that disease risk might be identified and patients treated to ensure a combination of maximal cure rates and minimal adverse therapeutic effects. This study has examined associations between clinicopathologic and cytogenetic variables and outcome in a trial cohort of children with ependymoma, with the aim of defining a practical scheme for stratifying this heterogeneous tumor. Intracranial ependymomas (n = 146) from children treated on the RT1 trial at St. Jude Children's Research Hospital were evaluated for the status of multiple pathological features. Interphase FISH (iFISH) defined the status of loci on chromosomes 1q (EXO1), 6q (LATS1) and 9, including 9p21 (CDKN2A). Data relating to these clinicopathological and cytogenetic variables were compared with survival data in order to model disease risk groups. Extent of surgical resection was a significant determinant of outcome in both supratentorial and infratentorial compartments. Tumor cell density and mitotic count were associated with outcome among children with posterior fossa ependymomas (n = 119). Among pathologic features, only brain invasion was associated with outcome in children with supratentorial ependymomas (n = 27). For posterior fossa tumors, gain of 1q was independently associated with outcome and in combination with clinicopathological variables defined both a two-tier and three-tier system of disease risk. Among children developing posterior fossa ependymomas treated with maximal surgical resection and conformal radiotherapy, key clinicopathological variables and chromosome 1q status can be used to define tiers of disease risk. In contrast, risk factors for pediatric supratentorial tumors are limited to sub-total resection and brain invasion.