Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(2): 412-421, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036635

RESUMEN

Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology.


Asunto(s)
Algoritmos , Bacterias/genética , Bacterias/metabolismo , Bacterias/química , Bacterias/clasificación , Mutación , Estrés Oxidativo , Filogenia , Metabolismo Secundario
2.
Int J Med Microbiol ; 307(8): 497-507, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29031453

RESUMEN

The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged to a genomic island and three putatively belonged to a type VI secretion system (T6SS). MLST types and SNP phylogeny indicated no clustering of the UTI or faecal E. coli from patients distinct from the control faecal isolates, although there was an overrepresentation of UTI isolates belonging to clonal lineages CC73 and CC12. One combination of mutations in FimH, N70S/S78N, was significantly associated to UTI, while phylogenetic analysis of FimH and fimH identified no signs of distinct adaptation of UTI isolates compared to faecal-only isolates not causing UTI. In summary, the results showed that (i) healthy women who had never previously had UTI carried faecal E. coli which were overall closely related to UTI and faecal isolates from UTI patients; (ii) UTI isolates do not cluster separately from faecal-only isolates based on SNP analysis; and (iii) 22 gene families of a genomic island, putative T6SS proteins as well as specific metabolism and virulence associated proteins were significantly more common in UTI isolates compared to faecal-only isolates and (iv) evolution of fimH for these isolates was not linked to the clinical source of the isolates, apart from the mutation combination N70S/S78N, which was correlated to UTI isolates of phylogroup B2. Combined, these findings illustrate that faecal and UTI isolates, as well as faecal-only and faecal-UTI isolates, are closely related and can only be distinguished, if at all, by their accessory genome.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Genoma Bacteriano , Genotipo , Infecciones Urinarias/microbiología , Adhesinas de Escherichia coli/genética , Análisis por Conglomerados , Escherichia coli/genética , Femenino , Proteínas Fimbrias/genética , Variación Genética , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Secuenciación Completa del Genoma
3.
Int J Med Microbiol ; 306(8): 595-603, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27825516

RESUMEN

The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria in order to traverse the perineum and successfully infect the urinary tract. Here, matching pairs of faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences with respect to mutations or mobilome when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation.


Asunto(s)
Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Heces/microbiología , Sistema Urinario/microbiología , Adaptación Biológica , Adaptación Fisiológica , Adulto , Animales , Escherichia coli/genética , Femenino , Variación Genética , Genoma Bacteriano , Genotipo , Humanos , Ratones , Análisis de Secuencia de ADN
4.
Proc Natl Acad Sci U S A ; 109(23): 9107-12, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22586109

RESUMEN

Hospital-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a global health burden dominated by a small number of bacterial clones. The pandemic EMRSA-16 clone (ST36-II) has been widespread in UK hospitals for 20 y, but its evolutionary origin and the molecular basis for its hospital association are unclear. We carried out a Bayesian phylogenetic reconstruction on the basis of the genome sequences of 87 S. aureus isolates including 60 EMRSA-16 and 27 additional clonal complex 30 (CC30) isolates, collected from patients in three continents over a 53-y period. The three major pandemic clones to originate from the CC30 lineage, including phage type 80/81, Southwest Pacific, and EMRSA-16, shared a most recent common ancestor that existed over 100 y ago, whereas the hospital-associated EMRSA-16 clone is estimated to have emerged about 35 y ago. Our CC30 genome-wide analysis revealed striking molecular correlates of hospital- or community-associated pandemics represented by mobile genetic elements and nonsynonymous mutations affecting antibiotic resistance and virulence. Importantly, phylogeographic analysis indicates that EMRSA-16 spread within the United Kingdom by transmission from hospitals in large population centers in London and Glasgow to regional health-care settings, implicating patient referrals as an important cause of nationwide transmission. Taken together, the high-resolution phylogenomic approach used resulted in a unique understanding of the emergence and transmission of a major MRSA clone and provided molecular correlates of its hospital adaptation. Similar approaches for hospital-associated clones of other bacterial pathogens may inform appropriate measures for controlling their intra- and interhospital spread.


Asunto(s)
Infección Hospitalaria/transmisión , Genoma Bacteriano/genética , Staphylococcus aureus Resistente a Meticilina/genética , Filogenia , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/transmisión , Secuencia de Bases , Teorema de Bayes , Humanos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , Reino Unido/epidemiología , Virulencia
5.
Proc Natl Acad Sci U S A ; 109(8): 3065-70, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22315421

RESUMEN

The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/genética , Europa (Continente)/epidemiología , Humanos , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple/genética
6.
PLoS Genet ; 7(9): e1002219, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931557

RESUMEN

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.


Asunto(s)
Biocombustibles , Lípidos/biosíntesis , Redes y Vías Metabólicas/genética , Rhodococcus/genética , Triglicéridos/biosíntesis , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Genoma Bacteriano , Genómica , Filogenia , Rhodococcus/metabolismo , Triglicéridos/genética
7.
Mol Biol Evol ; 29(4): 1175-86, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22114360

RESUMEN

Signatures of balancing selection can highlight polymorphisms and functions that are important to the long-term fitness of a species. We performed a first genome-wide scan for balancing selection in a bacterial species, Staphylococcus aureus, which is a common cause of serious antimicrobial-resistant infections of humans. Using a sliding window approach, the genomes of 16 strains of S. aureus, including 5 new genome sequences presented here, and 1 outgroup strain of S. epidermidis were scanned for signatures of balancing selection. A total of 195 short windows were investigated based on their extreme values of both Tajima's D (>2.03) and π/K ratios (>0.12) relative to the rest of the genome. To test the unusualness of these windows, an Approximate Bayesian Computation framework was used to select a null demographic model that better accounted for the observed data than did the standard neutral model. A total of 186 windows were demonstrated to be unusual under the null model and, thus, represented candidate loci under balancing selection. These 186 candidate windows were located within 99 candidate genes that were spread across 62 different loci. Nearly all the signal (97.2%) was located within coding sequences; balancing selection on gene regulation apparently occurs through the targeting of global regulators such as agr and gra/aps. The agr locus had some of the strongest signatures of balancing selection, which provides new insight into the causes of diversity at this locus. The list of candidate genes included multiple virulence-associated genes and was significantly enriched for functions in amino acid and inorganic ion transport and metabolism and in defense mechanisms against innate immunity and antimicrobials, highlighting these particular functions as important to the fitness of this pathogen.


Asunto(s)
Genes Bacterianos , Selección Genética , Staphylococcus aureus/genética , Teorema de Bayes , Evolución Molecular , Aptitud Genética , Sitios Genéticos , Metagenómica , Familia de Multigenes , Filogenia , Alineación de Secuencia , Staphylococcus epidermidis/genética
8.
J Bacteriol ; 194(10): 2740-1, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22535928

RESUMEN

Staphylococcus aureus is a major cause of antimicrobial-resistant infections of humans. Hybrids of S. aureus, which originate from large-scale chromosomal recombinations between parents of distinct genetic backgrounds, are of interest from clinical and evolutionary perspectives. We present draft genome sequences of two S. aureus hybrids of sequence type 34 (ST34) and ST42.


Asunto(s)
Genoma Bacteriano , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Cromosomas Bacterianos , Variación Genética , Datos de Secuencia Molecular
9.
Proc Natl Acad Sci U S A ; 105(8): 3100-5, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287045

RESUMEN

One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.


Asunto(s)
Fibrosis Quística/complicaciones , Ambiente , Evolución Molecular , Genoma Bacteriano , Filogenia , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Secuencia de Bases , Genómica , Humanos , Datos de Secuencia Molecular , Infecciones por Pseudomonas/etiología , Alineación de Secuencia , Análisis de Secuencia de ADN
10.
Microorganisms ; 9(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209190

RESUMEN

Recurrent urinary tract infection (rUTI) remains a major problem for many women and therefore the pursuit for genomic and phenotypic traits which could define rUTI has been ongoing. The present study applied a genomic approach to investigate recurrent urinary tract infections by comparative analyses of recurrent and non-recurrent Escherichia coli isolates from general practice. From whole-genome sequencing data, phylogenetic clustering and genomic traits were studied on a collection of isolates which caused recurrent infection compared to non-recurrent isolates. In addition, genomic variation between the 1st and following infection was studied on a subset of the isolates. Evidence of limited adaptation between the recurrent infections based on single nucleotide polymorphism analyses with a range of 0-13 non-synonymous single nucleotide polymorphisms (SNPs) between the paired isolates. This included an overrepresentation of SNPs in metabolism genes. We identified several genes which were more common in rUTI isolates, including nine fimbrial genes, however, not significantly after false-discovery rate. Finally, the results show that recurrent isolates of the present dataset are not distinctive by variation in the core genome, and thus, did not cluster distinct from non-rUTI isolates in a SNP phylogeny.

11.
Clin Cancer Res ; 11(12): 4406-14, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15958625

RESUMEN

PURPOSE: Malignant pleural mesothelioma (MPM) is a highly lethal neoplasm with limited pretreatment prognostication strategies. In this report, we examine the accuracy of a previously proposed prognostic test in an independent cohort of MPM patients. This test uses simple ratios of gene expression levels to provide a novel prognostication scheme. EXPERIMENTAL DESIGN: Gene expression data using high-density oligonucleotide microarrays (approximately 22,000 genes) were obtained for a new cohort of human MPM tumors from patients undergoing similar treatments (n = 39). The relative expression levels for specific genes were also determined using real-time quantitative reverse transcription-PCR. We also used a subset of these tumors associated with widely divergent patient survival (n = 23) as a training set to identify new treatment-specific candidate prognostic molecular markers and gene ratio-based prognostic tests. The predictive nature of these newly discovered markers and gene ratio-based prognostic tests were then examined in an independent group of tumors (n = 52) using microarray data and quantitative reverse transcription-PCR. RESULTS: Previously described MPM prognostic genes and gene ratio-based prognostic tests predicted clinical outcome in 39 independent MPM tumor specimens in a statistically significant manner. Newly discovered treatment-specific prognostic genes and gene ratio-based prognostic tests were highly accurate and statistically significant when examined in an independent group of 52 tumors from patients undergoing similar treatment. CONCLUSIONS: The data support the use of gene ratios in translating gene expression data into easily reproducible, statistically validated clinical tests for the prediction of outcome in MPM.


Asunto(s)
Genómica/métodos , Mesotelioma/patología , Neoplasias Pleurales/patología , Adulto , Anciano , Estudios de Cohortes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Mesotelioma/genética , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Pleurales/genética , Pronóstico , Reproducibilidad de los Resultados , Análisis de Supervivencia
13.
J Microbiol Methods ; 103: 101-3, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24912108

RESUMEN

Identifying and characterizing clonal diversity are important when analysing fecal flora. We evaluated random amplified polymorphic DNA (RAPD) PCR, applied for selection of Escherichia coli isolates, by whole genome sequencing. RAPD was fast, and reproducible as screening method for selection of distinct E. coli clones in fecal swabs.


Asunto(s)
Escherichia coli/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Tipificación Molecular/métodos , Reproducibilidad de los Resultados
14.
mBio ; 4(1): e00452-12, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23341549

RESUMEN

UNLABELLED: The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. IMPORTANCE: In the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seen Escherichia coli strain of serogroup O104:H4. Identification of subsequent infections caused by E. coli O104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.


Asunto(s)
Evolución Biológica , Infecciones por Escherichia coli/microbiología , Genoma Bacteriano , Escherichia coli Shiga-Toxigénica/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Diarrea/epidemiología , Diarrea/microbiología , Infecciones por Escherichia coli/epidemiología , Europa (Continente)/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Síndrome Hemolítico-Urémico/microbiología , Humanos , Secuencias Repetitivas Esparcidas , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
15.
mBio ; 4(4)2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23963180

RESUMEN

UNLABELLED: Enterococcus faecium, natively a gut commensal organism, emerged as a leading cause of multidrug-resistant hospital-acquired infection in the 1980s. As the living record of its adaptation to changes in habitat, we sequenced the genomes of 51 strains, isolated from various ecological environments, to understand how E. faecium emerged as a leading hospital pathogen. Because of the scale and diversity of the sampled strains, we were able to resolve the lineage responsible for epidemic, multidrug-resistant human infection from other strains and to measure the evolutionary distances between groups. We found that the epidemic hospital-adapted lineage is rapidly evolving and emerged approximately 75 years ago, concomitant with the introduction of antibiotics, from a population that included the majority of animal strains, and not from human commensal lines. We further found that the lineage that included most strains of animal origin diverged from the main human commensal line approximately 3,000 years ago, a time that corresponds to increasing urbanization of humans, development of hygienic practices, and domestication of animals, which we speculate contributed to their ecological separation. Each bifurcation was accompanied by the acquisition of new metabolic capabilities and colonization traits on mobile elements and the loss of function and genome remodeling associated with mobile element insertion and movement. As a result, diversity within the species, in terms of sequence divergence as well as gene content, spans a range usually associated with speciation. IMPORTANCE: Enterococci, in particular vancomycin-resistant Enterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistant E. faecium infections.


Asunto(s)
Infección Hospitalaria/epidemiología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple , Enterococcus faecium/efectos de los fármacos , Epidemias , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/veterinaria , Animales , Análisis por Conglomerados , Infección Hospitalaria/microbiología , ADN Bacteriano/química , Enterococcus faecium/clasificación , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Evolución Molecular , Genoma Bacteriano , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Filogenia , Análisis de Secuencia de ADN
16.
mBio ; 3(1): e00318-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22354958

RESUMEN

The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level.


Asunto(s)
Enterococcus/genética , Evolución Molecular , Genoma Bacteriano , Alelos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Enterococcus/clasificación , Enterococcus/patogenicidad , Sitios Genéticos , Variación Genética , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Especificidad de la Especie
17.
mBio ; 3(3)2012.
Artículo en Inglés | MEDLINE | ID: mdl-22617140

RESUMEN

UNLABELLED: Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States-all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE: Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.


Asunto(s)
Infección Hospitalaria/microbiología , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Infección Hospitalaria/epidemiología , Genómica , Humanos , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Estados Unidos/epidemiología , Resistencia a la Vancomicina
18.
Proc Natl Acad Sci U S A ; 101(8): 2584-9, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14983052

RESUMEN

Humans perceive an immense variety of chemicals as having distinct odors. Odor perception initiates in the nose, where odorants are detected by a large family of olfactory receptors (ORs). ORs have diverse protein sequences but can be assigned to subfamilies on the basis of sequence relationships. Members of the same subfamily have related sequences and are likely to recognize structurally related odorants. To gain insight into the mechanisms underlying odor perception, we analyzed the human OR gene family. By searching the human genome database, we identified 339 intact OR genes and 297 OR pseudogenes. Determination of their genomic locations showed that OR genes are unevenly distributed among 51 different loci on 21 human chromosomes. Sequence comparisons showed that the human OR family is composed of 172 subfamilies. Types of odorant structures that may be recognized by some subfamilies were predicted by identifying subfamilies that contain ORs with known odor ligands or human homologs of such ORs. Analysis of the chromosomal locations of members of each OR subfamily revealed that most subfamilies are encoded by a single chromosomal locus. Moreover, many loci encode only one or a few subfamilies, suggesting that different parts of the genome may, to some extent, be involved in the detection of different types of odorant structural motifs.


Asunto(s)
Mapeo Cromosómico , Odorantes , Receptores Odorantes/genética , Animales , Bases de Datos Factuales , Marcadores Genéticos , Proyecto Genoma Humano , Humanos , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
Proc Natl Acad Sci U S A ; 101(7): 2156-61, 2004 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-14769939

RESUMEN

In mammals, odor detection in the nose is mediated by a diverse family of olfactory receptors (ORs), which are used combinatorially to detect different odorants and encode their identities. The OR family can be divided into subfamilies whose members are highly related and are likely to recognize structurally related odorants. To gain further insight into the mechanisms underlying odor detection, we analyzed the mouse OR gene family. Exhaustive searches of a mouse genome database identified 913 intact OR genes and 296 OR pseudogenes. These genes were localized to 51 different loci on 17 chromosomes. Sequence comparisons showed that the mouse OR family contains 241 subfamilies. Subfamily sizes vary extensively, suggesting that some classes of odorants may be more easily detected or discriminated than others. Determination of subfamilies that contain ORs with identified ligands allowed tentative functional predictions for 19 subfamilies. Analysis of the chromosomal locations of members of each subfamily showed that many OR gene loci encode only one or a few subfamilies. Furthermore, most subfamilies are encoded by a single locus, suggesting that different loci may encode receptors for different types of odorant structural features. Comparison of human and mouse OR subfamilies showed that the two species have many, but not all, subfamilies in common. However, mouse subfamilies are usually larger than their human counterparts. This finding suggests that humans and mice recognize many of the same odorant structural motifs, but mice may be superior in odor sensitivity and discrimination.


Asunto(s)
Ratones/genética , Familia de Multigenes/genética , Receptores Odorantes/genética , Animales , Biología Computacional , Genoma , Humanos , Ligandos , Datos de Secuencia Molecular , Filogenia , Mapeo Físico de Cromosoma , Receptores Odorantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA