Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 131(Pt 4): 928-37, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18263625

RESUMEN

Neuronal oscillations span a wide range of spatial and temporal scales that extend beyond traditional clinical EEG. Recent research suggests that high-frequency oscillations (HFO), in the ripple (80-250 Hz) and fast ripple (250-1000 Hz) frequency range, may be signatures of epileptogenic brain and involved in the generation of seizures. However, most research investigating HFO in humans comes from microwire recordings, whose relationship to standard clinical intracranial EEG (iEEG) has not been explored. In this study iEEG recordings (DC - 9000 Hz) were obtained from human medial temporal lobe using custom depth electrodes containing both microwires and clinical macroelectrodes. Ripple and fast-ripple HFO recorded from both microwires and clinical macroelectrodes were increased in seizure generating brain regions compared to control regions. The distribution of HFO frequencies recorded from the macroelectrodes was concentrated in the ripple frequency range, compared to a broad distribution of HFO frequencies recorded from microwires. The average frequency of ripple HFO recorded from macroelectrodes was lower than that recorded from microwires (143.3 +/- 49.3 Hz versus 116.3 +/- 38.4, Wilcoxon rank sum P<0.0001). Fast-ripple HFO were most often recorded on a single microwire, supporting the hypothesis that fast-ripple HFO are primarily generated by highly localized, sub-millimeter scale neuronal assemblies that are most effectively sampled by microwire electrodes. Future research will address the clinical utility of these recordings for localizing epileptogenic networks and understanding seizure generation.


Asunto(s)
Relojes Biológicos , Epilepsia del Lóbulo Temporal/fisiopatología , Lóbulo Temporal/fisiopatología , Mapeo Encefálico/métodos , Electrodos Implantados , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador
2.
Brain Stimul ; 7(4): 603-607, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24933029

RESUMEN

BACKGROUND: Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). OBJECTIVE: Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). METHOD: An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling. RESULTS: STN DBS significantly increased BOLD activation in the sensorimotor cortex, supplementary motor area, caudate nucleus, pedunculopontine nucleus, cingulate, insular cortex, and cerebellum (FDR < 0.001). CONCLUSION: Our results demonstrate that STN DBS evokes neural network grouping within the motor network and the basal ganglia. Taken together, these data highlight the importance and specificity of neural circuitry activation patterns and functional connectivity.


Asunto(s)
Estimulación Encefálica Profunda , Imagen por Resonancia Magnética/métodos , Corteza Motora/fisiología , Vías Nerviosas , Oxígeno/sangre , Técnicas Estereotáxicas , Núcleo Subtalámico/fisiología , Animales , Ganglios Basales/fisiología , Núcleo Caudado/fisiología , Cerebelo/fisiología , Giro del Cíngulo/fisiología , Macaca mulatta , Masculino , Núcleo Tegmental Pedunculopontino/fisiología , Corteza Sensoriomotora/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA