Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochemistry ; 56(41): 5496-5502, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28949132

RESUMEN

B12-dependent proteins are involved in methyl transfer reactions ranging from the biosynthesis of methionine in humans to the formation of acetyl-CoA in anaerobic bacteria. During their catalytic cycle, they undergo large conformational changes to interact with various proteins. Recently, the crystal structure of the B12-containing corrinoid iron-sulfur protein (CoFeSP) in complex with its reductive activator (RACo) was determined, providing a first glimpse of how energy is transduced in the ATP-dependent reductive activation of corrinoid-containing methyltransferases. The thermodynamically uphill electron transfer from RACo to CoFeSP is accompanied by large movements of the cofactor-binding domains of CoFeSP. To refine the structure-based mechanism, we analyzed the conformational change of the B12-binding domain of CoFeSP by pulsed electron-electron double resonance and Förster resonance energy transfer spectroscopy. We show that the site-specific labels on the flexible B12-binding domain and the small subunit of CoFeSP move within 11 Å in the RACo:CoFeSP complex, consistent with the recent crystal structures. By analyzing the transient kinetics of formation and dissociation of the RACo:CoFeSP complex, we determined values of 0.75 µM-1 s-1 and 0.33 s-1 for rate constants kon and koff, respectively. Our results indicate that the large movement observed in crystals also occurs in solution and that neither the formation of the protein encounter complex nor the large movement of the B12-binding domain is rate-limiting for the ATP-dependent reductive activation of CoFeSP by RACo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Activadores de Enzimas/metabolismo , Firmicutes/enzimología , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Vitamina B 12/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Coenzimas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Dimerización , Activadores de Enzimas/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cinética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Vitamina B 12/química
2.
J Biol Chem ; 291(35): 18129-38, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27382049

RESUMEN

Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO, CoA, and a methyl-cation to form acetyl-CoA at a unique Ni,Ni-[4Fe4S] cluster (the A-cluster). However, it was unknown which proteins support the assembly of the A-cluster. We analyzed the product of a gene from the cluster containing the ACS gene, cooC2 from Carboxydothermus hydrogenoformans, named AcsFCh, and showed that it acts as a maturation factor of ACS. AcsFCh and inactive ACS form a stable 2:1 complex that binds two nickel ions with higher affinity than the individual components. The nickel-bound ACS-AcsFCh complex remains inactive until MgATP is added, thereby converting inactive to active ACS. AcsFCh is a MinD-type ATPase and belongs to the CooC protein family, which can be divided into homologous subgroups. We propose that proteins of one subgroup are responsible for assembling the Ni,Ni-[4Fe4S] cluster of ACS, whereas proteins of a second subgroup mature the [Ni4Fe4S] cluster of carbon monoxide dehydrogenases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/metabolismo , Firmicutes/enzimología , Proteínas Hierro-Azufre/metabolismo , Proteínas de la Membrana/metabolismo , Níquel/metabolismo , Adenosina Trifosfato/genética , Proteínas Bacterianas/genética , Coenzima A Ligasas/genética , Firmicutes/genética , Proteínas Hierro-Azufre/genética , Proteínas de la Membrana/genética
3.
Angew Chem Int Ed Engl ; 56(48): 15466-15469, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29024326

RESUMEN

CO dehydrogenases (CODHs) catalyse the reversible conversion between CO and CO2 . Genomic analysis indicated that the metabolic functions of CODHs vary. The genome of Carboxydothermus hydrogenoformans encodes five CODHs (CODH-I-V), of which CODH-IV is found in a gene cluster near a peroxide-reducing enzyme. Our kinetic and crystallographic experiments reveal that CODH-IV differs from other CODHs in several characteristic properties: it has a very high affinity for CO, oxidizes CO at diffusion-limited rate over a wide range of temperatures, and is more tolerant to oxygen than CODH-II. Thus, our observations support the idea that CODH-IV is a CO scavenger in defence against oxidative stress and highlight that CODHs are more diverse in terms of reactivity than expected.

4.
Proc Natl Acad Sci U S A ; 109(14): 5235-40, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431597

RESUMEN

Movement, cell division, protein biosynthesis, electron transfer against an electrochemical gradient, and many more processes depend on energy conversions coupled to the hydrolysis of ATP. The reduction of metal sites with low reduction potentials (E(0') < -500 mV) is possible by connecting an energetical uphill electron transfer with the hydrolysis of ATP. The corrinoid-iron/sulfur protein (CoFeSP) operates within the reductive acetyl-CoA pathway by transferring a methyl group from methyltetrahydrofolate bound to a methyltransferase to the [Ni-Ni-Fe(4)S(4)] cluster of acetyl-CoA synthase. Methylation of CoFeSP only occurs in the low-potential Co(I) state, which can be sporadically oxidized to the inactive Co(II) state, making its reductive reactivation necessary. Here we show that an open-reading frame proximal to the structural genes of CoFeSP encodes an ATP-dependent reductive activator of CoFeSP. Our biochemical and structural analysis uncovers a unique type of reductive activator distinct from the electron-transferring ATPases found to reduce the MoFe-nitrogenase and 2-hydroxyacyl-CoA dehydratases. The CoFeSP activator contains an ASKHA domain (acetate and sugar kinases, Hsp70, and actin) harboring the ATP-binding site, which is also present in the activator of 2-hydroxyacyl-CoA dehydratases and a ferredoxin-like [2Fe-2S] cluster domain acting as electron donor. Complex formation between CoFeSP and its activator depends on the oxidation state of CoFeSP, which provides evidence for a unique strategy to achieve unidirectional electron transfer between two redox proteins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Corrinoides/metabolismo , Proteínas Hierro-Azufre/metabolismo , Adenosina Trifosfatasas/metabolismo , Corrinoides/química , Dimerización , Proteínas Hierro-Azufre/química , Modelos Moleculares , Oxidación-Reducción , Espectrofotometría Ultravioleta
5.
Biol Chem ; 395(5): 545-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24477517

RESUMEN

The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation.


Asunto(s)
Acetilcoenzima A/metabolismo , Dióxido de Carbono , Monóxido de Carbono , Catálisis , Metales , Níquel
6.
PLoS One ; 11(7): e0158681, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27384529

RESUMEN

A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.


Asunto(s)
Proteínas Bacterianas/química , Cobalto/química , Corrinoides/química , Proteínas Hierro-Azufre/química , Vitamina B 12/química , Espectroscopía de Absorción de Rayos X/métodos , Proteínas Bacterianas/metabolismo , Fenómenos Químicos , Cobalto/metabolismo , Corrinoides/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Firmicutes/metabolismo , Iones/química , Iones/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ligandos , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Soluciones , Vitamina B 12/metabolismo
7.
Met Ions Life Sci ; 14: 37-69, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25416390

RESUMEN

Carbon monoxide (CO) pollutes the atmosphere and is toxic for respiring organisms including man. But CO is also an energy and carbon source for phylogenetically diverse microbes living under aerobic and anaerobic conditions. Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. Aerobic bacteria employ a Cu- and Mo-containing CODH in which Cu activates CO and Mo activates water and takes up the two electrons generated in the reaction. Anaerobic bacteria and archaea use a Ni- and Fe-containing CODH, where Ni activates CO and Fe provides the nucleophilic water. Ni- and Fe-containing CODHs are frequently associated with ACS, where the CODH component reduces CO2 to CO and ACS condenses CO with a methyl group and CoA to acetyl-CoA.Our current state of knowledge on how the three enzymes catalyze these reactions will be summarized and the different strategies of CODHs to achieve the same task within different active site architectures compared.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Archaea/enzimología , Bacterias Aerobias/enzimología , Bacterias Anaerobias/enzimología , Monóxido de Carbono/metabolismo , Monóxido de Carbono/toxicidad , Fuentes Generadoras de Energía , Complejos Multienzimáticos/metabolismo , Aerobiosis , Aldehído Oxidorreductasas/química , Anaerobiosis , Archaea/crecimiento & desarrollo , Bacterias Aerobias/crecimiento & desarrollo , Bacterias Anaerobias/crecimiento & desarrollo , Monóxido de Carbono/química , Humanos , Hierro/metabolismo , Complejos Multienzimáticos/química , Níquel/metabolismo , Estructura Secundaria de Proteína
8.
Nat Commun ; 5: 4626, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25109607

RESUMEN

Thermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases. The transfer of one electron from an activating enzyme to the cobalamin cofactor is energetically uphill and relies on coupling to an ATPase reaction. Our results demonstrate that the key to coupling is, besides the oxidation state-dependent complex formation, the conformational gating of the electron transfer. Complex formation induces a substitution of the ligand at the electron-accepting Co ion. Addition of ATP initiates electron transfer by provoking conformational changes that destabilize the complex. We show how remodelling of the electron-accepting Co(2+) promotes ATP-dependent electron transfer; an efficient strategy not seen in other electron-transferring ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Oxidación-Reducción , Vitamina B 12/química , Sitios de Unión , Calorimetría , Respiración de la Célula , Cromatografía , Cristalización , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrones , Iones , Ligandos , Modelos Moleculares , Nucleótidos/química , Oxígeno/química , Estructura Terciaria de Proteína , Espectrofotometría , Thermoanaerobacter/enzimología
9.
J Mol Biol ; 411(1): 96-109, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21640123

RESUMEN

Several anaerobic acetogenic, methanogenic, hydrogenogenic, and sulfate-reducing microorganisms are able to use the reductive acetyl-CoA (Wood-Ljungdahl) pathway to convert CO2 into biomass. The reductive acetyl-CoA pathway consists of two branches connected by the Co/Fe-containing corrinoid iron-sulfur protein (CoFeSP), which transfers a methyl group from a methyltransferase (MeTr)/methyltetrahydrofolate (CH3-H4 folate) complex to the reduced Ni-Ni-[4Fe-4S] cluster (cluster A) of acetyl-CoA synthase. We investigated the CoFeSP and MeTr couple of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans and show that the two proteins are able to catalyze the methyl-group transfer reaction from CH3-H4 folate to the Co(I) center of CoFeSP. We determined the crystal structures of both proteins. The structure of CoFeSP includes the previously unresolved N-terminal domain of the large subunit of CoFeSP, revealing a unique four-helix-bundle-like architecture in which a [4Fe-4S] cluster is shielded by hydrophobic amino acids. It further reveals that the corrinoid and the [4Fe-4S] cluster binding domains are mobile, which is mandatory for the postulated electron transfer between them. Furthermore, we solved the crystal structures of apo-MeTr, CH3-H4-folate-bound MeTr, and H4-folate-bound MeTr, revealing a substrate-induced closure of the CH3-H4 folate binding cavity of MeTr. We observed three different conformations of Asn200 depending on the substrate bound in the active site, demonstrating its conformational modulation by hydrogen-bonding interactions with the substrate. The observed flexibility could be essential to stabilize the transition state during methyl-group transfer. The conformational space and role of Asn200 are likely conserved in homologous cobalamin-dependent MeTrs such as methionine synthase.


Asunto(s)
Acetilcoenzima A/metabolismo , Bacterias Grampositivas/enzimología , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Redes y Vías Metabólicas , Metiltransferasas/química , Metiltransferasas/metabolismo , Cristalografía por Rayos X , Electrones , Bacterias Grampositivas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA