Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Tuberculosis (Edinb) ; 146: 102500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432118

RESUMEN

Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 µM; M. abscessus IC90 59.1 µM) and tribromsalan (M. tuberculosis IC90 76.92 µM; M. abscessus IC90 147.4 µM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Salicilanilidas , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Niclosamida/farmacología , Reposicionamiento de Medicamentos , Micobacterias no Tuberculosas/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
2.
J Med Chem ; 67(4): 2529-2548, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38331432

RESUMEN

Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 µM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.


Asunto(s)
Azetidinas , Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Azetidinas/farmacología , Azetidinas/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
3.
Sci Rep ; 13(1): 20332, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989843

RESUMEN

Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Rifampin/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
4.
Lancet Microbe ; 3(5): e382-e391, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544099

RESUMEN

BACKGROUND: Mycobacterium chimaera is a slowly growing non-tuberculous mycobacterium associated with outbreaks of fatal infections in patients after cardiac surgery, and it is increasingly being detected in patients with chronic lung conditions. M chimaera can cause disseminated disease, osteomyelitis, and chronic skin or soft-tissue infections. We aimed to find new inhibitory compounds and drug repurposing opportunities for M chimaera, as current therapeutic options often result in poor outcomes. METHODS: In an open drug discovery approach, we screened the Medicines for Malaria Venture (MMV) Pathogen Box to assess the in-vitro antimicrobial drug susceptibility of M chimaera compared with the antimicrobial drug susceptibility of the slowly growing, major human pathogen Mycobacterium tuberculosis, and the rapidly growing Mycobacterium abscessus reference strains. Compounds identified from an initial resazurin microtitre cell viability assay screen were further characterised by determining the minimum inhibitory concentration (MIC) of MMV Pathogen Box compounds against M chimaera; and the MICs of a panel of 20 drugs commonly used to treat mycobacterial infections against M tuberculosis, M abscessus, and M chimaera. We also assessed the time-kill kinetics of doxycycline, clarithromycin, ethambutol, and rifabutin against M chimaera. FINDINGS: M chimaera was inhibited by 21 (5%) of 400 compounds in the Pathogen Box. Ten compounds were active against all three mycobacteria. MMV675968, with activity against slowly growing mycobacteria that probably targets folate metabolism, had a mean MIC of 2·22 µM (0·80 µg/mL) against M chimaera. Antimicrobial susceptibility testing showed that oxazolidinones such as linezolid (mean MIC 3·13 µg/mL) were active against M chimaera and that bedaquiline was the most potent compound (mean MIC 0·02 µg/mL). Doxycycline, a broad-spectrum antimicrobial drug with excellent tissue penetration properties, also inhibited M chimaera with a mean MIC of 6·25 µg/mL. INTERPRETATION: Molecular diagnostics present an opportunity for more effective, targeted drug therapies-treating bacterial infections at the species level. Using an open drug discovery platform, we identified compounds that inhibit the newly recognised pathogen M chimaera. The existing evidence base is poor and the option for expensive drug discovery is improbable; therefore, we have also found options for drug repurposing. Future in-vivo efficacy studies will reveal whether these findings result in new, targeted treatment regimens for M chimaera. FUNDING: Wellcome Trust, National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), and the University of Sussex Junior Research Associate scheme.


Asunto(s)
Antiinfecciosos , Mycobacterium tuberculosis , Animales , Antiinfecciosos/farmacología , Doxiciclina/farmacología , Descubrimiento de Drogas , Humanos , Mycobacterium , Complejo Mycobacterium avium
5.
Vaccines (Basel) ; 10(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35062774

RESUMEN

New strategies are required to reduce the worldwide burden of tuberculosis. Intracellular survival and replication of Mycobacterium tuberculosis after macrophage phagocytosis is a fundamental step in the complex host-pathogen interactions that lead to granuloma formation and disease. Greater understanding of how the bacterium survives and thrives in these environments will inform novel drug and vaccine discovery programs. Here, we use in-depth RNA sequencing of Mycobacterium bovis BCG from human THP-1 macrophages to describe the mycobacterial adaptations to the intracellular environment. We identify 329 significantly differentially regulated genes, highlighting cholesterol catabolism, the methylcitrate cycle and iron homeostasis as important for mycobacteria inside macrophages. Examination of multi-functional gene families revealed that 35 PE/PPE genes and five cytochrome P450 genes were upregulated 24 h after infection, highlighting pathways of potential significance. Comparison of the intracellular transcriptome to gene essentiality and immunogenicity studies identified 15 potential targets that are both required for intracellular survival and induced on infection, and eight upregulated genes that have been demonstrated to be immunogenic in TB patients. Further insight into these new and established targets will support drug and vaccine development efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA