Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pain ; 18: 17448069221119614, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36000342

RESUMEN

Projection neurons belonging to the anterolateral system (ALS) underlie the perception of pain, skin temperature and itch. Many ALS cells are located in laminae III-V of the dorsal horn and the adjacent lateral white matter. However, relatively little is known about the excitatory synaptic input to these deep ALS cells, and therefore about their engagement with the neuronal circuitry of the region. We have used a recently developed mouse line, Phox2a::Cre, to investigate a population of deep dorsal horn ALS neurons known as "antenna cells", which are characterised by dense innervation from peptidergic nociceptors, and to compare these with other ALS cells in the deep dorsal horn and lateral white matter. We show that these two classes differ, both in the density of excitatory synapses, and in the source of input at these synapses. Peptidergic nociceptors account for around two-thirds of the excitatory synapses on the antenna cells, but for only a small proportion of the input to the non-antenna cells. Conversely, boutons with high levels of VGLUT2, which are likely to originate mainly from glutamatergic spinal neurons, account for only ∼5% of the excitatory synapses on antenna cells, but for a much larger proportion of the input to the non-antenna cells. VGLUT1 is expressed by myelinated low-threshold mechanoreceptors and corticospinal axons, and these innervate both antenna and non-antenna cells. However, the density of VGLUT1 input to the non-antenna cells is highly variable, consistent with the view that these neurons are functionally heterogeneous.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Proteínas de Homeodominio/genética , Integrasas , Ratones , Neuronas/fisiología , Células del Asta Posterior/fisiología , Médula Espinal , Asta Dorsal de la Médula Espinal
2.
Sci Rep ; 13(1): 5891, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041197

RESUMEN

Excitatory interneurons in the superficial dorsal horn (SDH) are heterogeneous, and include a class known as vertical cells, which convey information to lamina I projection neurons. We recently used pro-NPFF antibody to reveal a discrete population of excitatory interneurons that express neuropeptide FF (NPFF). Here, we generated a new mouse line (NPFFCre) in which Cre is knocked into the Npff locus, and used Cre-dependent viruses and reporter mice to characterise NPFF cell properties. Both viral and reporter strategies labelled many cells in the SDH, and captured most pro-NPFF-immunoreactive neurons (75-80%). However, the majority of labelled cells lacked pro-NPFF, and we found considerable overlap with a population of neurons that express the gastrin-releasing peptide receptor (GRPR). Morphological reconstruction revealed that most pro-NPFF-containing neurons were vertical cells, but these differed from GRPR neurons (which are also vertical cells) in having a far higher dendritic spine density. Electrophysiological recording showed that NPFF cells also differed from GRPR cells in having a higher frequency of miniature EPSCs, being more electrically excitable and responding to a NPY Y1 receptor agonist. Together, these findings indicate that there are at least two distinct classes of vertical cells, which may have differing roles in somatosensory processing.


Asunto(s)
Neuronas , Asta Dorsal de la Médula Espinal , Ratones , Animales , Oligopéptidos , Interneuronas , Receptores de Bombesina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA