Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Exp Neurol ; 378: 114824, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777250

RESUMEN

Ischemic stroke (IS), characterized by high mortality rate, occurs owing to diminished or blocked blood flow to the brain. Hyperglycemia (HG) is a major contributor to the risk of IS. HG induces augmented oxidative stress and Blood-Brain Barrier breakdown, which increases the influx of blood-derived myeloid cells into the brain parenchyma. In cerebral ischemia, infiltrating monocytes undergo differentiation into pro-inflammatory or anti-inflammatory macrophages, having a large effect on outcomes of ischemic stroke. In addition, interleukin-4 (IL-4) and interleukin-13 (IL-13) engage in post-ischemia repair by polarizing the infiltrating monocytes into an anti-inflammatory phenotype. In this study, we aimed to determine the effect of phenotypic polarization of monocyte-derived macrophages on the prognosis of IS with HG (HG-IS). We first established a hyperglycemic mouse model using streptozotocin (150 mg/kg) and induced transient middle cerebral artery occlusion. We observed that blood-brain barrier permeability increased in HG-IS mice, as per two-photon live imaging and Evans blue staining. We also confirmed the increased infiltration of monocyte-derived macrophages and the downregulation of anti-inflammatory macrophages related to tissue remodeling after inflammation in HG-IS mice through immunohistochemistry, western blotting, and flow cytometry. We observed phenotypic changes in monocyte-derived macrophages, alleviated infarct volume, and improved motor function in HG-IS mice treated with IL-4 and IL-13. These findings suggest that the modulation of phenotypic changes in monocyte-derived macrophages following IS in hyperglycemic mice may influence ischemic recovery.


Asunto(s)
Isquemia Encefálica , Hiperglucemia , Macrófagos , Ratones Endogámicos C57BL , Animales , Ratones , Hiperglucemia/patología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/efectos de los fármacos , Masculino , Isquemia Encefálica/patología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/patología , Monocitos/patología , Monocitos/metabolismo , Monocitos/efectos de los fármacos
2.
Biomed Pharmacother ; 168: 115755, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871560

RESUMEN

Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) share common features, including insulin resistance. Brain insulin resistance has been implicated as a key factor in the pathogenesis of AD. Recent studies have demonstrated that anti-diabetic drugs sodium-glucose cotransporter-2 inhibitor (SGLT2-i) and dipeptidyl peptidase-4 inhibitor (DPP4-i) improve insulin sensitivity and provide neuroprotection. However, the effects of these two inhibitors on the brain metabolism and insulin resistance remain uninvestigated. We developed a T2D-AD mouse model using a high-fat diet (HFD) for 19 weeks along with a single dose of streptozotocin (100 mg/kg, intraperitoneally) at the fourth week of HFD initiation. Subsequently, the animals were treated with SGLT2-i (empagliflozin, 25 mg/kg/day orally [p.o.]) and DPP4-i (sitagliptin, 100 mg/kg/day p.o.) for 7 weeks. Subsequently, behavioral tests were performed, and the expression of insulin signaling, AD-related, and other signaling pathway proteins in the brain were examined. T2D-AD mice not only showed increased blood glucose levels and body weight but also insulin resistance. SGLT2-i and DPP4-i effectively ameliorated insulin sensitivity and reduced body weight in these mice. Furthermore, SGLT2-i and DPP4-i significantly improved hippocampal-dependent learning, memory, and cognitive functions in the T2D-AD mouse model. Interestingly, SGLT2-i and DPP4-i reduced the hyperphosphorylated tau (pTau) levels and amyloid ß (Aß) accumulation and enhanced brain insulin signaling. SGLT2-i reduced pTau accumulation through the angiotensin converting enzyme-2/angiotensin (1-7)/ mitochondrial assembly receptor axis, whereas DPP4-i reduced Aß accumulation by increasing insulin-degrading enzyme levels. These findings suggest that SGLT2-i and DPP4-i prevent AD-like pathology and cognitive dysfunction in T2D mice potentially through affecting brain insulin signaling via different mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Resistencia a la Insulina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Resistencia a la Insulina/fisiología , Péptidos beta-Amiloides/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Transportador 2 de Sodio-Glucosa , Dipeptidil Peptidasa 4/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Cognición , Modelos Animales de Enfermedad , Peso Corporal
3.
Mol Ther Oncolytics ; 23: 138-150, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34703882

RESUMEN

CD200 is known as an immune checkpoint molecule that inhibits innate immune cell activation. Using a head and neck squamous cell carcinoma (HNSCC) model, we sought to determine whether localized delivery of adenovirus-expressing sCD200R1-Ig, the soluble extracellular domain of CD200R1, enhances antitumor immunity. Mouse-derived bone marrow cells and M1/M2-like macrophages were cocultured with tumor cells and analyzed for macrophage polarization. As an in vivo model, C57BL/6 mice were subcutaneously injected with MEER/CD200High cells, CD200-overexpressing mouse HNSCC cells. Adenovirus-expressing sCD200R1-Ig (Ad5sCD200R1) was designed, and its effect was tested. Components in the tumor-immune microenvironment (TIME) were quantified using flow cytometry. CD200 promoted tumor growth and induced the expression of immune-related genes, especially macrophage colony-stimulating factor (M-CSF). Interestingly, CD200 induced M2-like polarization both in vitro and in vivo. Consequently, CD200 recruited more regulatory T (Treg) cells and fewer CD8+ effector T cells. These effects were effectively abolished by local injection of Ad5sCD200R1. These protumor effects of CD200 were driven through the ß-catenin/NF-κB/M-CSF axis. CD200 upregulated PD-L1, and the combined targeting of CD200 and PD-1 thus showed synergy. The immune checkpoint CD200 upregulated immune-related genes through ß-catenin signaling, reprogrammed the TIME, and exerted protumor effects. Ad5sCD200R1 injection could be an effective targeted strategy to enhance antitumor immunoediting.

4.
Cancers (Basel) ; 11(10)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627350

RESUMEN

The membrane glycoprotein CD200 binds to its receptor CD200R1 and induces tolerance, mainly in cells of the myeloid lineage; however, information regarding its role in solid tumors is limited. Here, we investigated whether CD200 expression, which is enriched mainly in high-grade head and neck squamous cell carcinoma (HNSCC), correlates with cancer progression, particularly the epithelial-to-mesenchymal transition (EMT). The forced overexpression of CD200 in the HNSCC cell line, UMSCC84, not only increased the expression of EMT-related genes, but also enhanced invasiveness. The cleaved cytoplasmic domain of CD200 interacted with ß-catenin in the cytosol, was translocated to the nucleus, and eventually enhanced EMT-related gene expression. CD200 increased the invasiveness of mouse tonsillar epithelium immortalized with E6, E7, and Ras (MEER), a model of tonsillar squamous cell carcinoma. siRNA inhibition of CD200 or extracellular domain of CD200R1 down-regulated the expression of EMT-related genes and decreased invasiveness. Consistently, compared to CD200-null MEER tumors, subcutaneous CD200-expressing MEER tumors showed significantly increased metastatic migration into draining lymph nodes. Our study demonstrates a novel and unique role of CD200 in inducing EMT, suggesting the potential therapeutic target for blocking solid cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA