Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes Dev ; 32(23-24): 1550-1561, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463902

RESUMEN

Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.


Asunto(s)
División Celular/genética , Autorrenovación de las Células/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/citología , Regiones no Traducidas 3'/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Silenciador del Gen , Proteínas Nucleares/metabolismo , Células Madre/citología
2.
Development ; 141(7): 1453-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598157

RESUMEN

Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis.


Asunto(s)
Encéfalo/patología , Proteínas Cdc20/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Células-Madre Neurales/patología , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/enzimología , Proteínas Cdc20/genética , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Genes p53/fisiología , Necrosis/genética , Células-Madre Neurales/enzimología , Transducción de Señal/genética , Estrés Fisiológico/genética
3.
Dev Cell ; 18(1): 126-35, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20152183

RESUMEN

To ensure normal development and maintenance of homeostasis, the extensive developmental potential of stem cells must be functionally distinguished from the limited developmental potential of transit amplifying cells. Yet the mechanisms that restrict the developmental potential of transit amplifying cells are poorly understood. Here we show that the evolutionarily conserved transcription factor dFezf/Earmuff (Erm) functions cell-autonomously to maintain the restricted developmental potential of the intermediate neural progenitors generated by type II neuroblasts in Drosophila larval brains. Although erm mutant intermediate neural progenitors are correctly specified and show normal apical-basal cortical polarity, they can dedifferentiate back into a neuroblast state, functionally indistinguishable from normal type II neuroblasts. Erm restricts the potential of intermediate neural progenitors by activating Prospero to limit proliferation and by antagonizing Notch signaling to prevent dedifferentiation. We conclude that Erm dependence functionally distinguishes intermediate neural progenitors from neuroblasts in the Drosophila larval brain, balancing neurogenesis with stem cell maintenance.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Sistema Nervioso/embriología , Neurogénesis/fisiología , Neuronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Polaridad Celular/fisiología , Proliferación Celular , Drosophila/citología , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Larva/citología , Larva/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Células Madre/citología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA