Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Genet ; 11(8): e1005457, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26275053

RESUMEN

Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle's response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx-/Runx1f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts' normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx-/Runx1f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Músculo Esquelético/fisiología , Mioblastos/fisiología , Regeneración , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Secuencia de Consenso , Femenino , Expresión Génica , Regulación de la Expresión Génica , Genes jun , Masculino , Ratones Endogámicos mdx , Proteína MioD/metabolismo
2.
Blood Cells Mol Dis ; 45(2): 112-6, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20554226

RESUMEN

Runx3 protein products that are translated from the distal (P1)- and proximal (P2)-promoter transcripts appear on Western blots as a 47-46kDa doublet corresponding to full-length proteins bearing the P1- and P2-N-termini respectively. An additional 44kDa protein band, the origin and nature of which was unclear, is also detected. Transfection of full-length Runx3 cDNA bearing the P2 N-terminus (P2-cDNA) into HEK293 cells resulted in expression of both 46 and 44kDa proteins. Sequence analysis of the P2-cDNA revealed an in-frame ATG 90bp downstream (+90ATG) of the proximal +1ATG. Insertion of an N-terminal HA-tag into P2-cDNA immediately downstream of the +1ATG produced HA-tagged 46kDa and untagged 44kDa proteins, consistent with the possibility that the latter was translated through initiation at the internal +90ATG site. Deleting or blocking the activity of the +1ATG, the natural cap-dependent translation initiation site in P2-cDNA, abrogated production of the 46kDa Runx3 protein while facilitating production of the 44kDa product. These findings supported the notion that Runx3 44kDa protein resulted from internal translation initiation at the +90ATG. Northern blot and RT-PCR analyses performed on RNA from P2-cDNA transfected cells showed a single transcript and product respectively, of the expected size, ruling out the possibility that the 44kDa protein was translated from transcripts originating at a cryptic promoter or produced by alternative splicing. Taken together, the data indicate that the 44kDa protein results from translation initiation at the internal ATG and that Runx3, like its family members Runx1 and Runx2, contains a mechanism for internal mRNA translation initiation.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Isoformas de Proteínas/biosíntesis , Animales , Western Blotting , Línea Celular , Codón Iniciador , Perros , Ratones , Análisis de Secuencia de ADN
3.
PLoS One ; 15(5): e0233044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453801

RESUMEN

Mice deficient in the transcription factor Runx3 develop a multitude of immune system defects, including early onset colitis. This paper demonstrates that Runx3 is expressed in colonic mononuclear phagocytes (MNP), including resident macrophages (RM) and dendritic cell subsets (cDC2). Runx3 deletion in MNP causes early onset colitis due to their impaired maturation. Mechanistically, the resulting MNP subset imbalance leads to up-regulation of pro-inflammatory genes as occurs in IL10R-deficient RM. In addition, RM and cDC2 display a marked decrease in expression of anti-inflammatory/TGF ß-regulated genes and ß-catenin signaling associated genes, respectively. MNP transcriptome and ChIP-seq data analysis suggest that a significant fraction of genes affected by Runx3 loss are direct Runx3 targets. Collectively, Runx3 imposes intestinal immune tolerance by regulating maturation of colonic anti-inflammatory MNP, befitting the identification of RUNX3 as a genome-wide associated risk gene for various immune-related diseases in humans, including gastrointestinal tract diseases such as Crohn's disease and celiac.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Sistema Mononuclear Fagocítico/inmunología , Animales , Diferenciación Celular , Colitis/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Receptores de Interleucina-10/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo
4.
BMC Dev Biol ; 7: 84, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17626615

RESUMEN

BACKGROUND: Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. RESULTS: We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. CONCLUSION: The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the significance of alternative promoter usage in Runx1 biology.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis Extramedular/genética , Regiones Promotoras Genéticas , Timo/embriología , Alelos , Animales , Apoptosis , Diferenciación Celular , Ensayo de Unidades Formadoras de Colonias , Cartilla de ADN , Embrión de Mamíferos , Células Madre Embrionarias/citología , Citometría de Flujo , Genes Letales , Células Madre Hematopoyéticas/citología , Hibridación in Situ , Ratones , Ratones Noqueados , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Timo/citología
5.
Rev Enferm ; 26(2): 76-80, 2003 Feb.
Artículo en Español | MEDLINE | ID: mdl-14502919

RESUMEN

Developmental Care focuses on care methods whose purpose are to reduce the stress factors which affect premature infants by means of modifying the environment and the direct treatment style during their hospitalization in Neonatal Intensive Care Units. This program calls for use of a strategy favorable to those conditions which foment healthy growth and development. The author describes the characteristics of this program and the theoretical bases which underlie it, and the author points out specific nursing interventions which reflect this manner of dealing with the treatment of premature babies.


Asunto(s)
Recien Nacido Prematuro , Cuidado Intensivo Neonatal/métodos , Humanos , Recién Nacido , Recien Nacido Prematuro/crecimiento & desarrollo , Unidades de Cuidado Intensivo Neonatal , Cuidado Intensivo Neonatal/normas
6.
Cell Rep ; 4(6): 1131-43, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24055056

RESUMEN

The t(8;21) and inv(16) chromosomal aberrations generate the oncoproteins AML1-ETO (A-E) and CBFß-SMMHC (C-S). The role of these oncoproteins in acute myeloid leukemia (AML) etiology has been well studied. Conversely, the function of native RUNX1 in promoting A-E- and C-S-mediated leukemias has remained elusive. We show that wild-type RUNX1 is required for the survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 leukemic cells. RUNX1 knockdown in Kasumi-1 cells (Kasumi-1(RX1-KD)) attenuates the cell-cycle mitotic checkpoint, leading to apoptosis, whereas knockdown of A-E in Kasumi-1(RX1-KD) rescues these cells. Mechanistically, a delicate RUNX1/A-E balance involving competition for common genomic sites that regulate RUNX1/A-E targets sustains the malignant cell phenotype. The broad medical significance of this leukemic cell addiction to native RUNX1 is underscored by clinical data showing that an active RUNX1 allele is usually preserved in both t(8;21) or inv(16) AML patients, whereas RUNX1 is frequently inactivated in other forms of leukemia. Thus, RUNX1 and its mitotic control targets are potential candidates for new therapeutic approaches.


Asunto(s)
Inversión Cromosómica , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Translocación Genética , Apoptosis/genética , Línea Celular Tumoral , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 18 , Cromosomas Humanos Par 21 , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/patología , Transfección
7.
Dev Biol ; 303(2): 703-14, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17222403

RESUMEN

The Runx3 transcription factor regulates development of T cells during thymopoiesis and TrkC sensory neurons during dorsal root ganglia neurogenesis. It also mediates transforming growth factor-beta signaling in dendritic cells and is essential for development of skin Langerhans cells. Here, we report that Runx3 is involved in the development of skin dendritic epidermal T cells (DETCs); an important component of tissue immunoregulation. In developing DETCs, Runx3 regulates expression of the alphaEbeta7 integrin CD103, known to affect migration and epithelial retention of DETCs. It also regulates expression of IL-2 receptor beta (IL-2Rbeta) that mediates cell proliferation in response to IL-2 or IL-15. In the absence of Runx3, the reduction in CD103 and IL-2Rbeta expression on Runx3(-/-) DETC precursors resulted in impaired cell proliferation and maturation, leading to complete lack of skin DETCs in Runx3(-/-) mice. The data demonstrate the requirement of Runx3 for DETCs development and underscore the importance of CD103 and IL-2Rbeta in this process. Of note, while Runx3(-/-) mice lack both DETCs and Langerhans cells, the two most important components of skin immune surveillance, the mice did not develop skin lesions under pathogen-free (SPF) conditions.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Células de Langerhans/citología , Células de Langerhans/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Antígenos CD/metabolismo , Secuencia de Bases , Diferenciación Celular , Proliferación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/deficiencia , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Cadenas alfa de Integrinas/metabolismo , Subunidad beta del Receptor de Interleucina-2/metabolismo , Células de Langerhans/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Piel/citología , Piel/embriología , Piel/inmunología , Piel/metabolismo , Linfocitos T/inmunología
8.
EMBO J ; 23(4): 969-79, 2004 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-14765120

RESUMEN

Runx3 transcription factor regulates cell lineage decisions in thymopoiesis and neurogenesis. Here we report that Runx3 knockout (KO) mice develop spontaneous eosinophilic lung inflammation associated with airway remodeling and mucus hypersecretion. Runx3 is specifically expressed in mature dendritic cells (DC) and mediates their response to TGF-beta. In the absence of Runx3, DC become insensitive to TGF-beta-induced maturation inhibition, and TGF-beta-dependent Langerhans cell development is impaired. Maturation of Runx3 KO DC is accelerated and accompanied by increased efficacy to stimulate T cells and aberrant expression of beta2-integrins. Lung alveoli of Runx3 KO mice accumulate DC characteristic of allergic airway inflammation. Taken together, abnormalities in DC function and subset distribution may constitute the primary immune system defect, which leads to the eosinophilic lung inflammation in Runx3 KO mice. These data may help elucidate the molecular mechanisms underlying the pathogenesis of allergic airway inflammation in humans.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Dendríticas/metabolismo , Neumonía/inmunología , Factores de Transcripción/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Líquido del Lavado Bronquioalveolar/citología , Antígenos CD18/biosíntesis , Células Cultivadas , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Células Dendríticas/patología , Eosinófilos/patología , Ratones , Ratones Noqueados , Moco/metabolismo , Neumonía/patología , Alveolos Pulmonares/patología , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos T/patología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
9.
Proc Natl Acad Sci U S A ; 100(13): 7731-6, 2003 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-12796513

RESUMEN

The RUNX transcription factors are important regulators of lineage-specific gene expression. RUNX are bifunctional, acting both as activators and repressors of tissue-specific target genes. Recently, we have demonstrated that Runx3 is a neurogenic transcription factor, which regulates development and survival of proprioceptive neurons in dorsal root ganglia. Here we report that Runx3 and Runx1 are highly expressed in thymic medulla and cortex, respectively, and function in development of CD8 T cells during thymopoiesis. Runx3-deficient (Runx3 KO) mice display abnormalities in CD4 expression during lineage decisions and impairment of CD8 T cell maturation in the thymus. A large proportion of Runx3 KO peripheral CD8 T cells also expressed CD4, and in contrast to wild-type, their proliferation ability was largely reduced. In addition, the in vitro cytotoxic activity of alloimmunized peritoneal exudate lymphocytes was significantly lower in Runx3 KO compared with WT mice. In a compound mutant mouse, null for Runx3 and heterozygous for Runx1 (Runx3-/-;Runx1+/-), all peripheral CD8 T cells also expressed CD4, resulting in a complete lack of single-positive CD8+ T cells in the spleen. The results provide information on the role of Runx3 and Runx1 in thymopoiesis and suggest that both act as transcriptional repressors of CD4 expression during T cell lineage decisions.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas , Timo/citología , Factores de Transcripción/fisiología , Animales , Antígenos CD4/biosíntesis , Linfocitos T CD4-Positivos/metabolismo , División Celular , Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Noqueados , Bazo/metabolismo , Timo/metabolismo
10.
Blood Cells Mol Dis ; 30(2): 161-3, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12732178

RESUMEN

The RUNX transcription factors are key regulators of lineage specific gene expression in developmental pathways. The mammalian RUNX genes arose early in evolution and maintained extensive structural similarities. Sequence analysis suggested that RUNX3 is the most ancient of the three mammalian genes, consistent with its role in neurogenesis of the monosynaptic reflex arc, the simplest neuronal response circuit, found in Cnidarians, the most primitive animals. All RUNX proteins bind to the same DNA motif and act as activators or repressors of transcription through recruitment of common transcriptional modulators. Nevertheless, analysis of Runx1 and Runx3 expression during embryogenesis revealed that their function is not redundant. In adults both Runx1 and Runx3 are highly expressed in the hematopoietic system. At early embryonic stages we found strong Runx3 expression in dorsal root ganglia neurons, confined to TrkC sensory neurons. In the absence of Runx3, knockout mice develop severe ataxia due to the early death of the TrkC neurons. Other phenotypic defects of Runx3 KO mice including abnormalities in thymopoiesis are also being investigated.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Animales , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Proteínas de Unión al ADN/clasificación , Proteínas de Drosophila , Humanos , Mamíferos , Proteínas Nucleares , Filogenia , Factores de Transcripción/clasificación
11.
EMBO J ; 21(13): 3454-63, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12093746

RESUMEN

The RUNX transcription factors are important regulators of linage-specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3-deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC-, parvalbumin- and beta-galactosidase-positive cells. Thus, Runx3 is a neurogenic TrkC neuron-specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory-related ataxia in humans.


Asunto(s)
Ataxia/genética , Proteínas de Unión al ADN/fisiología , Ganglios Espinales/patología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Neuronas Aferentes/citología , Propiocepción/fisiología , Receptor trkC/análisis , Trastornos Somatosensoriales/genética , Factores de Transcripción/fisiología , Vías Aferentes/fisiopatología , Animales , Ataxia/patología , Ataxia/fisiopatología , Axones/ultraestructura , Biomarcadores , Muerte Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Ganglios Espinales/química , Genotipo , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Mutantes Neurológicos , Neuronas Motoras/fisiología , Husos Musculares/patología , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Parvalbúminas/análisis , Propiocepción/genética , Trastornos Somatosensoriales/patología , Trastornos Somatosensoriales/fisiopatología , Médula Espinal/patología , Sinapsis/patología , Transmisión Sináptica , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Ganglio del Trigémino/química , Ganglio del Trigémino/patología , beta-Galactosidasa/análisis
12.
Rev. Rol enferm ; 26(2): 160-164, feb. 2003. ilus, tab
Artículo en Es | IBECS (España) | ID: ibc-21202

RESUMEN

El Developmental Care es un enfoque de cuidados que propone reducir los factores de estrés que afectan al niño prematuro a través de modificaciones en el entorno y en el estilo del cuidado directo durante su hospitalización en las Unidades de Cuidados Intensivos Neonatales. Supone una estrategia favorecedora de las condiciones que potencian un crecimiento y desarrollo saludables. Se describen las características de este enfoque y las bases teóricas que lo sustentan, y se apuntan intervenciones enfermeras específicas que reflejan esta manera de afrontar el cuidado de los bebés prematuros. (AU)


Asunto(s)
Humanos , Recién Nacido , Recien Nacido Prematuro , Cuidado Intensivo Neonatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA