Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 97: 102688, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35717902

RESUMEN

Erythropoiesis is a tightly regulated process. It is stimulated by decreased oxygen in circulation, which leads to the secretion of the hormone erythropoietin (Epo) by the kidneys. An additional layer of control involves the coordinated sensing and use of nutrients. Much cellular machinery contributes to sensing and responding to nutrient status in cells, and one key participant is the kinase LKB1. The current study examines the role of LKB1 in erythropoiesis using a murine in vivo and ex vivo conditional knockout system. In vivo analysis showed erythroid loss of LKB1 to be associated with a robust increase in serum Epo and mild reticulocytosis. Despite these abnormalities, no evidence of anemia or hemolysis was found. Further characterization using an ex vivo progenitor culture assay demonstrated accelerated erythroid maturation in the LKB1-deficient cells. Based on pharmacologic evidence, this phenotype appeared to result from impaired AMP-activated protein kinase (AMPK) signaling downstream of LKB1. These findings reveal a role for LKB1 in fine-tuning Epo-driven erythropoiesis in association with maturational control.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Precursoras Eritroides , Eritropoyesis , Eritropoyetina , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Eritropoyesis/fisiología , Eritropoyetina/genética , Eritropoyetina/metabolismo , Humanos , Hígado/metabolismo , Ratones , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo
2.
Haematologica ; 105(4): 905-913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31171641

RESUMEN

Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Diferenciación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Eritropoyesis , Humanos , Ratones
3.
Blood ; 120(20): 4219-28, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22983445

RESUMEN

In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.


Asunto(s)
Eritropoyesis/fisiología , Factor de Transcripción GATA1/fisiología , Histona Desacetilasas/fisiología , Proteína Quinasa C/fisiología , Acetilación , Anemia/enzimología , Anemia/genética , Anemia/patología , Animales , Carbazoles/farmacología , Linaje de la Célula , Citocinas/fisiología , Activación Enzimática , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/enzimología , Eritropoyesis/efectos de los fármacos , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Humanos , Indoles/farmacología , Maleimidas/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Transducción de Señal
4.
Front Biosci (Schol Ed) ; 16(2): 10, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38939973

RESUMEN

The ETS transcription factor PU.1 plays an essential role in blood cell development. Its precise expression pattern is governed by cis-regulatory elements (CRE) acting at the chromatin level. CREs mediate the fine-tuning of graded levels of PU.1, deviations of which can cause acute myeloid leukemia. In this review, we perform an in-depth analysis of the regulation of PU.1 expression in normal and malignant hematopoiesis. We elaborate on the role of trans-acting factors and the biomolecular interplays in mediating local chromatin dynamics. Moreover, we discuss the current understanding of CRE bifunctionality exhibiting enhancer or silencer activities in different blood cell lineages and future directions toward gene-specific chromatin-targeted therapeutic development.


Asunto(s)
Hematopoyesis , Proteínas Proto-Oncogénicas , Transactivadores , Humanos , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Linaje de la Célula , Animales , Transcripción Genética , Regulación de la Expresión Génica , Leucemia Mieloide Aguda/genética , Cromatina/metabolismo , Cromatina/genética
5.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260486

RESUMEN

The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.

6.
J Biol Chem ; 287(23): 19207-15, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22514271

RESUMEN

Signaling via the intracellular second messenger cyclic AMP (cAMP) has long been implicated in the repression of megakaryocytic differentiation. However, the mechanisms by which cAMP signaling impairs megakaryopoiesis have never been elucidated. In a human CD34(+) cell culture model, we show that the adenylyl cyclase agonist forskolin inhibits megakaryocytic differentiation in a protein kinase A-dependent manner. Using this system to screen for downstream effectors, we identified the transcription factor E2A as a key target in a novel repressive signaling pathway. Specifically, forskolin acting through protein kinase A-induced E2A down-regulation and enforced expression of E2A overrode the inhibitory effects of forskolin on megakaryopoiesis. The dependence of megakaryopoiesis on critical thresholds of E2A expression was confirmed in vivo in haploinsufficient mice and ex vivo using shRNA knockdown in human progenitors. Using a variety of approaches, we further identified p21 (encoded by CDKN1A) as a functionally important megakaryopoietic regulator residing downstream of E2A. These results thus implicate the E2A-CDKN1A transcriptional axis in the control of megakaryopoiesis and reveal the lineage-selective inhibition of this axis as a likely mechanistic basis for the inhibitory effects of cAMP signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , AMP Cíclico/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Megacariocitos/metabolismo , Sistemas de Mensajero Secundario/fisiología , Trombopoyesis/fisiología , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células HEK293 , Humanos , Megacariocitos/citología , Ratones , Ratones Mutantes
7.
Elife ; 122023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578340

RESUMEN

Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, ß-thalassemia, polycythemia vera, and myelodysplastic syndromes.


Asunto(s)
Eritropoyesis , Talasemia beta , Humanos , Eritropoyesis/fisiología , Eritrocitos/metabolismo , Hierro/metabolismo , Hemoglobinas
8.
Blood ; 116(1): 97-108, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20407036

RESUMEN

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.


Asunto(s)
Células Precursoras Eritroides/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/farmacología , Anemia Ferropénica/sangre , Anemia Ferropénica/etiología , Anemia Ferropénica/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Femenino , Citometría de Flujo , Humanos , Immunoblotting , Deficiencias de Hierro , Proteína 1 Reguladora de Hierro/genética , Isocitratos/administración & dosificación , Células K562 , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , Transducción de Señal/efectos de los fármacos
9.
J Clin Invest ; 132(19)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35925681

RESUMEN

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Asunto(s)
Megacariocitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recién Nacido , Megacariocitos/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Trombocitopenia/genética , Trombopoyesis/genética , Quinasas DyrK
10.
Nat Chem Biol ; 5(4): 236-43, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19172146

RESUMEN

It has been proposed that inhibitors of an oncogene's effects on multipotent hematopoietic progenitor cell differentiation may change the properties of the leukemic stem cells and complement the clinical use of cytotoxic drugs. Using zebrafish, we developed a robust in vivo hematopoietic differentiation assay that reflects the activity of the oncogene AML1-ETO. Screening for modifiers of AML1-ETO-mediated hematopoietic dysregulation uncovered unexpected roles of COX-2- and beta-catenin-dependent pathways in AML1-ETO function. This approach may open doors for developing therapeutics targeting oncogene function within leukemic stem cells.


Asunto(s)
Proteínas Oncogénicas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Dinoprostona , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Células K562 , Nitrobencenos , Proteínas Oncogénicas/genética , Bibliotecas de Moléculas Pequeñas , Sulfonamidas , Factores de Transcripción , Pez Cebra , beta Catenina
11.
Nat Commun ; 12(1): 1645, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712594

RESUMEN

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI.


Asunto(s)
Anemia/metabolismo , Anemia/terapia , Citoesqueleto/metabolismo , Hierro/metabolismo , Microtúbulos/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Células Eritroides/metabolismo , Eritropoyesis/fisiología , Femenino , Ferritinas/metabolismo , Isocitratos , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas/metabolismo , Proteómica
12.
Blood ; 112(13): 4884-94, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18780834

RESUMEN

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood. In this study, we identified functional and physical interaction of GATA-1 with components of the positive transcriptional elongation factor P-TEFb, a complex containing cyclin T1 and the cyclin-dependent kinase 9 (Cdk9). Megakaryocytic induction was associated with dynamic changes in endogenous P-TEFb composition, including recruitment of GATA-1 and dissociation of HEXIM1, a Cdk9 inhibitor. shRNA knockdowns and pharmacologic inhibition both confirmed contribution of Cdk9 activity to megakaryocytic differentiation. In mice with megakaryocytic GATA-1 deficiency, Cdk9 inhibition produced a fulminant but reversible megakaryoblastic disorder reminiscent of the transient myeloproliferative disorder of Down syndrome. P-TEFb has previously been implicated in promoting elongation of paused RNA polymerase II and in programming hypertrophic differentiation of cardiomyocytes. Our results offer evidence for P-TEFb cross-talk with GATA-1 in megakaryocytic differentiation, a program with parallels to cardiomyocyte hypertrophy.


Asunto(s)
Diferenciación Celular , Quinasa 9 Dependiente de la Ciclina/fisiología , Factor de Transcripción GATA1/metabolismo , Megacariocitos/citología , Factor B de Elongación Transcripcional Positiva/metabolismo , Receptor Cross-Talk , Animales , Células Cultivadas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Síndrome de Down , Factor de Transcripción GATA1/genética , Humanos , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos
13.
J Cell Biochem ; 107(3): 377-82, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19350569

RESUMEN

Transcription factors originally identified as drivers of erythroid differentiation subsequently became linked to megakaryopoiesis, reflecting the shared parentage of red cells and platelets. The divergent development of megakaryocytic and erythroid progenitors relies on signaling pathways that impose lineage-specific transcriptional programs on non-lineage-restricted protein complexes. One such signaling pathway involves RUNX1, a transcription factor upregulated in megakaryocytes and downregulated in erythroid cells. In this pathway, RUNX1 engages the erythro-megakaryocytic master regulator GATA-1 in a megakaryocytic transcriptional complex whose activity is highly dependent on the P-TEFb kinase complex. The implications of this pathway for normal and pathological megakaryopoiesis are discussed.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA1/metabolismo , Megacariocitos/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Transcripción Genética , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA1/genética , Humanos , Megacariocitos/citología , Transducción de Señal
14.
Cancer Res ; 66(6): 2990-6, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16540647

RESUMEN

Human acute myeloid leukemias with the t(8;21) translocation express the AML1-ETO fusion protein in the hematopoietic stem cell compartment and show impairment in erythroid differentiation. This clinical finding is reproduced in multiple murine and cell culture model systems in which AML1-ETO specifically interferes with erythroid maturation. Using purified normal human early hematopoietic progenitor cells, we find that AML1-ETO impedes the earliest discernable steps of erythroid lineage commitment. Correspondingly, GATA-1, a central transcriptional regulator of erythroid differentiation, undergoes repression by AML1-ETO in a nonconventional histone deacetylase-independent manner. In particular, GATA-1 acetylation by its transcriptional coactivator, p300/CBP, a critical regulatory step in programming erythroid development, is efficiently blocked by AML1-ETO. Fusion of a heterologous E1A coactivator recruitment module to GATA-1 overrides the inhibitory effects of AML1-ETO on GATA-1 acetylation and transactivation. Furthermore, the E1A-GATA-1 fusion, but not wild-type GATA-1, rescues erythroid lineage commitment in primary human progenitors expressing AML1-ETO. These results ascribe a novel repressive mechanism to AML1-ETO, blockade of GATA-1 acetylation, which correlates with its inhibitory effects on primary erythroid lineage commitment.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Células Precursoras Eritroides/fisiología , Factor de Transcripción GATA1/metabolismo , Proteínas de Fusión Oncogénica/fisiología , Acetilación , Antígenos CD34/biosíntesis , Antígenos CD34/inmunología , Antígenos CD36/biosíntesis , Antígenos CD36/inmunología , Diferenciación Celular/fisiología , Línea Celular , Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/inmunología , Células Precursoras Eritroides/metabolismo , Humanos , Células K562 , Proteínas de Fusión Oncogénica/biosíntesis , Proteínas de Fusión Oncogénica/genética , Proteína 1 Compañera de Translocación de RUNX1 , Activación Transcripcional , Transfección , Dedos de Zinc/fisiología , Factores de Transcripción p300-CBP/metabolismo
15.
Exp Hematol ; 61: 1-9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501467

RESUMEN

Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.


Asunto(s)
Megacariocitos/citología , Sangre Fetal/citología , Humanos , Megacariocitos/patología , Modelos Biológicos , Morfogénesis/fisiología , Fenotipo , Trombocitopenia/patología
16.
J Exp Med ; 215(2): 661-679, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29282252

RESUMEN

Iron-restricted human anemias are associated with the acquisition of marrow resistance to the hematopoietic cytokine erythropoietin (Epo). Regulation of Epo responsiveness by iron availability serves as the basis for intravenous iron therapy in anemias of chronic disease. Epo engagement of its receptor normally promotes survival, proliferation, and differentiation of erythroid progenitors. However, Epo resistance caused by iron restriction selectively impairs proliferation and differentiation while preserving viability. Our results reveal that iron restriction limits surface display of Epo receptor in primary progenitors and that mice with enforced surface retention of the receptor fail to develop anemia with iron deprivation. A mechanistic pathway is identified in which erythroid iron restriction down-regulates a receptor control element, Scribble, through the mediation of the iron-sensing transferrin receptor 2. Scribble deficiency reduces surface expression of Epo receptor but selectively retains survival signaling via Akt. This mechanism integrates nutrient sensing with receptor function to permit modulation of progenitor expansion without compromising survival.


Asunto(s)
Eritropoyesis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hierro/farmacología , Proteínas de la Membrana/metabolismo , Receptores de Eritropoyetina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Catepsinas/metabolismo , Línea Celular , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/ultraestructura , Humanos , Isocitratos/farmacología , Ratones Endogámicos C57BL , Modelos Biológicos , Estabilidad Proteica/efectos de los fármacos , Receptores de Transferrina/metabolismo
17.
Crit Rev Eukaryot Gene Expr ; 17(4): 271-80, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17725493

RESUMEN

Runt-related transcription factor 1 (RUNX1) and GATA-1 are both transcription factors known to play essential roles in hematopoiesis. Genetic alterations of each are associated with abnormal platelet development, as well as predisposition to leukemia. In addition, in vitro and animal studies indicate that both factors are involved in megakaryopoiesis. We and others have previously shown that RUNX1 and GATA-1 physically interact and cooperate in the activation of megakaryocytic promoters such as alpha IIb integrin and glycoprotein Ibalpha. Moreover, transcriptional cooperation of RUNX1 with GATA-1 is conserved back to Drosophila in which RUNX1 and GATA-1 homologs cooperate in crystal cell development. In this article, we will review the molecular and functional significance of the transcriptional cross talk between RUNX1 and GATA-1. In particular, we will elaborate on recent data which suggest that GATA-1 targets RUNX1 for modification, in particular phosphorylation by cyclin-dependent kinases. Furthermore, targeting of RUNX1 by GATA-1 for phosphorylation may convert RUNX1 from a repressor to an activator. This is a potential mechanism of transcriptional cooperation and may be an essential step in megakaryocytic differentiation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA1/fisiología , Regulación de la Expresión Génica/fisiología , Transcripción Genética/fisiología , Animales , Factor de Transcripción GATA1/genética , Humanos , Megacariocitos/citología , Ratones , Mutación , Fosforilación
18.
Cancer Lett ; 251(2): 179-86, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17125917

RESUMEN

The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability.


Asunto(s)
Médula Ósea/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hematopoyesis , Leucemia Mieloide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Enfermedad Aguda , Animales , Diferenciación Celular , Células Madre Hematopoyéticas/fisiología , Humanos , Modelos Biológicos , Mutación , Proteína 1 Compañera de Translocación de RUNX1 , Proteínas Supresoras de Tumor/efectos de los fármacos
19.
Mol Cell Biol ; 24(17): 7779-94, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15314183

RESUMEN

Although Jun upregulation and activation have been established as critical to oncogenesis, the relevant downstream pathways remain incompletely characterized. In this study, we found that c-Jun blocks erythroid differentiation in primary human hematopoietic progenitors and, correspondingly, that Jun factors block transcriptional activation by GATA-1, the central regulator of erythroid differentiation. Mutagenesis of c-Jun suggested that its repression of GATA-1 occurs through a transcriptional mechanism involving activation of downstream genes. We identified the hairy-enhancer-of-split-related factor HERP2 as a novel gene upregulated by c-Jun. HERP2 showed physical interaction with GATA-1 and repressed GATA-1 transcriptional activation. Furthermore, transduction of HERP2 into primary human hematopoietic progenitors inhibited erythroid differentiation. These results thus define a novel regulatory pathway linking the transcription factors c-Jun, HERP2, and GATA-1. Furthermore, these results establish a connection between the Notch signaling pathway, of which the HERP factors are a critical component, and the GATA family, which participates in programming of cellular differentiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Eritropoyesis/fisiología , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Antígenos CD34 , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Factores de Unión al ADN Específico de las Células Eritroides , Factor de Transcripción GATA1 , Secuencias Hélice-Asa-Hélice , Células Madre Hematopoyéticas/citología , Humanos , Células K562 , Proteínas Proto-Oncogénicas c-jun/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transcripción Genética
20.
Blood Adv ; 1(15): 1181-1194, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29296759

RESUMEN

Erythroid progenitors are the largest consumers of iron in the human body. In these cells, a high flux of iron must reach the mitochondrial matrix to form sufficient heme to support hemoglobinization. Canonical erythroid iron trafficking occurs via the first transferrin receptor (TfR1)-mediated endocytosis of diferric-transferrin into recycling endosomes, where ferric iron is released, reduced, and exported to the cytosol via DMT1. However, mice lacking TfR1 or DMT1 demonstrate residual erythropoiesis, suggesting additional pathways for iron use. How iron moves from endosomes to mitochondria is incompletely understood, with both cytosolic chaperoning and "kiss and run" interorganelle transfer implicated. TfR2, in contrast to its paralog TfR1, has established roles in iron sensing, but not iron uptake. Recently, mice with marrow-selective TfR2 deficiency were found to exhibit microcytosis, suggesting TfR2 may also contribute to erythroid hemoglobinization. In this study, we identify alternative trafficking, in which TfR2 mediates lysosomal transferrin delivery. Imaging studies reveal an erythroid lineage-specific organelle arrangement consisting of a focal lysosomal cluster surrounded by a nest of mitochondria, with direct contacts between these 2 organelles. Erythroid TfR2 deficiency yields aberrant mitochondrial morphology, implicating TfR2-dependent transferrin trafficking in mitochondrial maintenance. Human TFR2 shares a lineage- and stage-specific expression pattern with MCOLN1, encoding a lysosomal iron channel, and MFN2, encoding a protein mediating organelle contacts. Functional studies reveal these latter factors to be involved in mitochondrial regulation and erythroid differentiation, with Mfn2 required for mitochondrial-lysosomal contacts. These findings identify a new pathway for erythroid iron trafficking involving TfR2-mediated lysosomal delivery followed by interorganelle transfer to mitochondria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA