Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37112231

RESUMEN

Clinical alarm and decision support systems that lack clinical context may create non-actionable nuisance alarms that are not clinically relevant and can cause distractions during the most difficult moments of a surgery. We present a novel, interoperable, real-time system for adding contextual awareness to clinical systems by monitoring the heart-rate variability (HRV) of clinical team members. We designed an architecture for real-time capture, analysis, and presentation of HRV data from multiple clinicians and implemented this architecture as an application and device interfaces on the open-source OpenICE interoperability platform. In this work, we extend OpenICE with new capabilities to support the needs of the context-aware OR including a modularized data pipeline for simultaneously processing real-time electrocardiographic (ECG) waveforms from multiple clinicians to create estimates of their individual cognitive load. The system is built with standardized interfaces that allow for free interchange of software and hardware components including sensor devices, ECG filtering and beat detection algorithms, HRV metric calculations, and individual and team alerts based on changes in metrics. By integrating contextual cues and team member state into a unified process model, we believe future clinical applications will be able to emulate some of these behaviors to provide context-aware information to improve the safety and quality of surgical interventions.


Asunto(s)
Algoritmos , Programas Informáticos , Monitoreo Fisiológico , Determinación de la Frecuencia Cardíaca , Cognición
2.
Anesth Analg ; 131(3): 969-976, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31804406

RESUMEN

This article describes the concept of Medical Device Interface Data Sheets (MDIDSs) to document and characterize medical device interface data requirements, the processes for creating MDIDSs, and its role in supporting patient safety and cybersecurity of current systems while enabling innovation in the area of next-generation medical Internet of Things (IoT) platforms for integrating sensors, actuators, and applications (apps).


Asunto(s)
Seguridad Computacional , Prestación Integrada de Atención de Salud , Equipos y Suministros , Interoperabilidad de la Información en Salud , Internet de las Cosas , Telemedicina , Interfaz Usuario-Computador , Redes de Comunicación de Computadores , Diseño de Equipo , Seguridad de Equipos , Humanos , Seguridad del Paciente , Diseño de Software , Integración de Sistemas
3.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217945

RESUMEN

OBJECTIVE: In this study, we built a mobile continuous Blood Oxygen Saturation (SpO2) monitor, and for the first time, explored key design principles towards daily applications. METHODS: We firstly built a customized wearable computer that can sense two-channel photoplethysmogram (PPG) signals, and transmit the signals wirelessly to smartphone. Afterwards, we explored many SpO2 model building principles, focusing on linear/nonlinear models, different PPG parameter calculation methods, and different finger types. Moreover, we further compared PPG sensor placement principles by comparing different hand configurations and different finger configurations. Finally, a dataset collected from eleven human subjects was used to evaluate the mobile health monitor and explore all of the above design principles. RESULTS: The experimental results show that the root mean square error of the SpO2 estimation is only 1.8, indicating the effectiveness of the system. CONCLUSION: These results indicate the effectiveness of the customized mobile SpO2 monitor and the selected design principles. SIGNIFICANCE: This research is expected to facilitate the continuous SpO2 monitoring of patients with clinical indications.


Asunto(s)
Oximetría , Oxígeno/sangre , Fotopletismografía , Adulto , Computadores , Femenino , Mano , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Teléfono Inteligente , Tecnología Inalámbrica , Adulto Joven
4.
J Extra Corpor Technol ; 51(1): 38-40, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30936587

RESUMEN

If a perfusionist weans a patient off the heart lung machine (HLM) and the anesthesiologist has not re-started the ventilator, the patient will become hypoxic. The objective of this project was to create a redundant safety system of verbal and electronic communication to prevent failure to ventilate errors after cardiopulmonary bypass. This objective could be realized by building an electronic communication bridge directly between the HLM and ventilator. A software application was created to retrieve and interpret data from the pump and ventilator and trigger a programmed smart alarm. The software is able to interpret data from the pump and ventilator. When both are off simultaneously (defined as a pump flow of 0 L/min with a respiratory rate of 0 breaths/min), the application will raies an alarm. Communication between a pump and ventilator is possible, enabling the deployment of a safety system that could exist in the operating room (OR) as a standalone alarm. A device dataset can be used to optimize clinical performance of the alarm. The application could also be integrated into smart checklists and computer-assisted OR process models that are currently in development.


Asunto(s)
Puente Cardiopulmonar , Ventiladores Mecánicos , Humanos , Procedimientos Quirúrgicos Vasculares
5.
Anesth Analg ; 124(1): 83-94, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27387840

RESUMEN

In this article, we describe the role of "clinical scenario" information to assure the safety of interoperable systems, as well as the system's ability to deliver the requisite clinical functionality to improve clinical care. Described are methods and rationale for capturing the clinical needs, workflow, hazards, and device interactions in the clinical environment. Key user (clinician and clinical engineer) needs and system requirements can be derived from this information, therefore, improving the communication from clinicians to medical device and information technology system developers. This methodology is intended to assist the health care community, including researchers, standards developers, regulators, and manufacturers, by providing clinical definition to support requirements in the systems engineering process, particularly those focusing on development of Integrated Clinical Environments described in standard ASTM F2761. Our focus is on identifying and documenting relevant interactions and medical device capabilities within the system using a documentation tool called medical device interface data sheets and mitigating hazardous situations related to workflow, product usability, data integration, and the lack of effective medical device-health information technology system integration to achieve safe interoperability. Portions of the analysis of a clinical scenario for a "patient-controlled analgesia safety interlock" are provided to illustrate the method. Collecting better clinical adverse event information and proposed solutions can help identify opportunities to improve current device capabilities and interoperability and support a learning health system to improve health care delivery. Developing and analyzing clinical scenarios are the first steps in creating solutions to address vexing patient safety problems and enable clinical innovation. A Web-based research tool for implementing a means of acquiring and managing this information, the Clinical Scenario Repository™ (MD PnP Program), is described.


Asunto(s)
Analgesia Controlada por el Paciente/métodos , Analgésicos/administración & dosificación , Recolección de Datos/métodos , Medicina Basada en la Evidencia/métodos , Seguridad del Paciente , Evaluación de la Tecnología Biomédica/métodos , Analgesia Controlada por el Paciente/efectos adversos , Analgesia Controlada por el Paciente/instrumentación , Analgésicos/efectos adversos , Alarmas Clínicas , Conducta Cooperativa , Documentación , Diseño de Equipo , Falla de Equipo , Humanos , Bombas de Infusión , Comunicación Interdisciplinaria , Grupo de Atención al Paciente , Medición de Riesgo , Factores de Riesgo , Flujo de Trabajo
6.
Anesth Analg ; 124(1): 127-135, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27584685

RESUMEN

Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.


Asunto(s)
Recolección de Datos/normas , Seguridad de Equipos/normas , Equipos y Suministros/normas , Informática Médica/normas , Seguridad del Paciente/normas , Integración de Sistemas , Evaluación de la Tecnología Biomédica/normas , Biomarcadores/sangre , Conducta Cooperativa , Recolección de Datos/métodos , Electrocardiografía , Registros Electrónicos de Salud , Diseño de Equipo , Equipos y Suministros/efectos adversos , Frecuencia Cardíaca , Humanos , Comunicación Interdisciplinaria , Informática Médica/métodos , Registro Médico Coordinado , Oximetría/normas , Oxígeno/sangre , Guías de Práctica Clínica como Asunto , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Evaluación de la Tecnología Biomédica/métodos
7.
Mil Med ; 189(Supplement_3): 171-178, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160799

RESUMEN

INTRODUCTION: The need for remote ventilator control has been highlighted by the COVID-19 Public Health Emergency. Remote ventilator control from outside a patient's room can improve response time to patient needs, protect health care workers, and reduce personal protective equipment (PPE) consumption. Extending remote control to distant locations can expand the capabilities of frontline health care workers by delivering specialized clinical expertise to the point of care, which is much needed in diverse health care settings, such as tele-critical care and military medicine. However, the safety and effectiveness of remote ventilator control can be affected by many risk factors, including communication failures and network disruptions. Consensus safety requirements and test methods are needed to assess the resilience and safety of remote ventilator control under communication failures and network disruptions. MATERIALS AND METHODS: We designed two test methods to assess the robustness, usability, and safety of a remote ventilator control prototype system jointly developed by Nihon Kohden OrangeMed, Inc. and DocBox, Inc. ("the NK-DocBox system") to control the operation of an NKV-550 critical care ventilator under communication failures and network disruptions. First, the robustness of the NKV-550 ventilator was tested using a remote-control application developed on OpenICE - an open-source medical device interoperability platform - to transmit customized high-frequency and erroneous remote-control commands that could be caused by communication failures in a real-world environment. The second method utilized a network emulator to create different types and severity of network quality of service (QoS) degradation, including bandwidth throttling, network delay and jitter, packet drop and reordering, and bit errors, in the NKV-DocBox system to quantitatively assess the impact on system usability and safety. RESULTS: The NKV-550 ventilator operated as expected when remote-control commands arrived as fast as once per second. It ignored erroneous commands attempting to adjust invalid ventilation parameters. When facing commands that set the ventilation mode and parameters to invalid values, it reset the ventilation mode or parameters to default values, the safety implication of which may merit further evaluation. When any network QoS attribute (except for packet reordering) started to degrade, the NK-DocBox System experienced interference to its remote-control function, such as delays in the transmission of ventilator data and remote-control commands within the system. When the network QoS was worse than 500 ms network delay, 100 ms network jitter, 1% data drop rate, 12 Mbps minimal bandwidth, or 1e-6 bit error rate, the system became unsafe to use. For example, ventilator waveforms visualized on the remote-control application demonstrated freezes, out-of-synchronization, and moving backwards; and the connection between the ventilator and the remote-control application became unstable. CONCLUSION: The presented test methods confirmed the robustness of the NKV-550 ventilator against high-frequency and erroneous remote control, quantified the impact of network disruptions on the usability, reliability, and safety of the NK-DocBox system and identified the minimum network QoS requirements for it to function safely. These generalizable test methods can be customized to evaluate other remote ventilator control technologies and remote control of other types of medical devices against communication failures and network disruptions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ventiladores Mecánicos , Humanos , COVID-19/prevención & control , Ventiladores Mecánicos/normas , Reproducibilidad de los Resultados , Telemedicina/normas , Telemedicina/instrumentación , Cuidados Críticos/métodos , Cuidados Críticos/normas , Comunicación
8.
Anesth Analg ; 125(2): 707-708, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28654431
9.
J Diabetes Sci Technol ; 16(4): 887-895, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533135

RESUMEN

INTRODUCTION: The first meeting of the Integration of Continuous Glucose Monitor Data into the Electronic Health Record (iCoDE) project, organized by Diabetes Technology Society, took place virtually on January 27, 2022. METHODS: Clinicians, government officials, data aggregators, attorneys, and standards experts spoke in panels and breakout groups. Three themes were covered: 1) why digital health data integration into the electronic health record (EHR) is needed, 2) what integrated continuously monitored glucose data will look like, and 3) how this process can be achieved in a way that will satisfy clinicians, healthcare organizations, and regulatory experts. RESULTS: The meeting themes were addressed within eight sessions: 1) What Do Inpatient Clinicians Want to See With Integration of CGM Data into the EHR?, 2) What Do Outpatient Clinicians Want to See With Integration of CGM Data into the EHR?, 3) Why Are Data Standards and Guidances Useful?, 4) What Value Can Data Integration Services Add?, 5) What Are Examples of Successful Integration?, 6) Which Privacy, Security, and Regulatory Issues Must Be Addressed to Integrate CGM Data into the EHR?, 7) Breakout Group Discussions, and 8) Presentation of Breakout Group Ideas. CONCLUSIONS: Creation of data standards and workflow guidance are necessary components of the Integration of Continuous Glucose Monitor Data into the Electronic Health Record (iCoDE) standard project. This meeting, which launched iCoDE, will be followed by a set of working group meetings intended to create the needed standard.


Asunto(s)
Diabetes Mellitus , Registros Electrónicos de Salud , Glucemia , Diabetes Mellitus/terapia , Humanos , Flujo de Trabajo
10.
J Res Natl Inst Stand Technol ; 113(2): 121-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-27096115

RESUMEN

With rapid advances in meso-, micro- and nano-scale technology devices and electronics, a new generation of advanced medical devices is emerging, which promises medical treatment that is less invasive and more accurate, automated, and effective. We examined the technological and economic status of five categories of medical devices. A set of metrology needs is identified for each of these categories and suggestions are made to address them.

11.
Biomed Tech (Berl) ; 63(1): 39-47, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28734113

RESUMEN

We give an overview of OpenICE, an open source implementation of the ASTM standard F2761 for the Integrated Clinical Environment (ICE) that leverages medical device interoperability, together with an analysis of the clinical and non-functional requirements and community process that inspired its design.


Asunto(s)
Equipos y Suministros/normas , Redes de Comunicación de Computadores , Humanos , Programas Informáticos
12.
Artículo en Inglés | MEDLINE | ID: mdl-30729236

RESUMEN

During cardiac surgery there is an unmet need for safe transfer of responsibility for patient oxygenation back and forth from the anesthesia to the perfusion teams. Prior to cardiopulmonary bypass (CPB), lung ventilation is performed by the anesthesia machine ventilator and is the responsibility of the anesthesia team. During CPB, lung ventilation is halted and oxygenation is performed by the CPB oxygenator and perfusion team This recurrent transfer throughout the procedure introduces the rare but serious possibility of a "never event", resulting in the patient's lungs not being ventilated upon stopping the CPB and potentially leading to catastrophic hypoxemia. Monitors and alarms on the anesthesia and bypass machines would not be useful when the other device is operating so they are routinely put into a standby mode until needed. Consequently, in the event that the handoff is missed, there are no alarms to catch the situation. To solve this unmet need, we propose a novel interoperable, context-aware system capable of detecting and acting if this rare situation occurs. Our system is built on the open-source OpenICE framework, allowing it to seamlessly work with a variety of ventilator and bypass machines.

13.
Artículo en Inglés | MEDLINE | ID: mdl-30140792

RESUMEN

This paper summarizes the accomplishments and recent directions of our medical safety project. Our process-based approach uses a detailed, rigorously-defined, and carefully validated process model to provide a dynamically updated, context-aware and thus, "Smart" Checklist to help process performers understand and manage their pending tasks [7]. This paper focuses on support for teams of performers, working independently as well as in close collaboration, in stressful situations that are life critical. Our recent work has three main thrusts: provide effective real-time guidance for closely collaborating teams; develop and evaluate techniques for measuring cognitive load based on biometric observations and human surveys; and, using these measurements plus analysis and discrete event process simulation, predict cognitive load throughout the process model and propose process modifications to help performers better manage high cognitive load situations. This project is a collaboration among software engineers, surgical team members, human factors researchers, and medical equipment instrumentation experts. Experimental prototype capabilities are being built and evaluated based upon process models of two cardiovascular surgery processes, Aortic Valve Replacement (AVR) and Coronary Artery Bypass Grafting (CABG). In this paper we describe our approach for each of the three research thrusts by illustrating our work for heparinization, a common subprocess of both AVR and CABG. Heparinization is a high-risk error-prone procedure that involves complex team interactions and thus highlights the importance of this work for improving patient outcomes.

14.
Artículo en Inglés | MEDLINE | ID: mdl-30547096

RESUMEN

In the surgical setting, team members constantly deal with a high-demand operative environment that requires simultaneously processing a large amount of information. In certain situations, high demands imposed by surgical tasks and other sources may exceed team member's cognitive capacity, leading to cognitive overload which may place patient safety at risk. In the present study, we describe a novel approach to integrate an objective measure of team member's cognitive load with procedural, behavioral and contextual data from real-life cardiac surgeries. We used heart rate variability analysis, capturing data simultaneously from multiple team members (surgeon, anesthesiologist and perfusionist) in a real-time and unobtrusive manner. Using audio-video recordings, behavioral coding and a hierarchical surgical process model, we integrated multiple data sources to create an interactive surgical dashboard, enabling the analysis of the cognitive load imposed by specific steps, substeps and/or tasks. The described approach enables us to detect cognitive load fluctuations over time, under specific conditions (e.g. emergencies, teaching) and in situations that are prone to errors. This in-depth understanding of the relationship between cognitive load, task demands and error occurrence is essential for the development of cognitive support systems to recognize and mitigate errors during complex surgical care in the operating room.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30506066

RESUMEN

Procedural flow disruptions secondary to interruptions play a key role in error occurrence during complex medical procedures, mainly because they increase mental workload among team members, negatively impacting team performance and patient safety. Since certain types of interruptions are unavoidable, and consequently the need for multitasking is inherent to complex procedural care, this field can benefit from an intelligent system capable of identifying in which moment flow interference is appropriate without generating disruptions. In the present study we describe a novel approach for the identification of tasks imposing low cognitive load and tasks that demand high cognitive effort during real-life cardiac surgeries. We used heart rate variability analysis as an objective measure of cognitive load, capturing data in a real-time and unobtrusive manner from multiple team members (surgeon, anesthesiologist and perfusionist) simultaneously. Using audio-video recordings, behavioral coding and a hierarchical surgical process model, we integrated multiple data sources to create an interactive surgical dashboard, enabling the identification of specific steps, substeps and tasks that impose low cognitive load. An interruption management system can use these low demand situations to guide the surgical team in terms of the appropriateness of flow interruptions. The described approach also enables us to detect cognitive load fluctuations over time, under specific conditions (e.g. emergencies) or in situations that are prone to errors. An in-depth understanding of the relationship between cognitive overload states, task demands, and error occurrence will drive the development of cognitive supporting systems that recognize and mitigate errors efficiently and proactively during high complex procedures.

18.
Artículo en Inglés | MEDLINE | ID: mdl-28752132

RESUMEN

Despite significant efforts to reduce preventable adverse events in medical processes, such events continue to occur at unacceptable rates. This paper describes a computer science approach that uses formal process modeling to provide situationally aware monitoring and management support to medical professionals performing complex processes. These process models represent both normative and non-normative situations, and are validated by rigorous automated techniques such as model checking and fault tree analysis, in addition to careful review by experts. Context-aware Smart Checklists are then generated from the models, providing cognitive support during high-consequence surgical episodes. The approach is illustrated with a case study in cardiovascular surgery.

19.
Surgery ; 139(6): 717-28, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16782425

RESUMEN

BACKGROUND: Many surgeons believe that long turnover times between cases are a major impediment to their productivity. We hypothesized that redesigning the operating room (OR) and perioperative-staffing system to take advantage of parallel processing would improve throughput and lower the cost of care. METHODS: A state of the art high tech OR suite equipped with augmented data collection systems served as a living laboratory to evaluate both new devices and perioperative systems of care. The OR suite and all the experimental studies carried out in this setting were designated as the OR of the Future Project (ORF). Before constructing the ORF, modeling studies were conducted to inform the architectural and staffing design and estimate their benefit. In phase I a small prospective trial tested the main hypothesized benefits of the ORF: reduced patient intra-operative flow-time, wait-time and operative procedure time. In phase II a larger retrospective study was conducted to explore factors influencing these effects. A modified process costing method was used to estimate costs based on nationally derived data. Cost-effectiveness was evaluated using standard methods. RESULTS: There were 385 cases matched by surgeon and procedure type in the retrospective dataset (182 ORF, 193 standard operating room [SOR]). The median Wait Time (12.5 m ORF vs 23.8 m SOR), Operative Procedure Time (56.1 m ORF vs 70.5 m SOR), Emergence Time (10.9 m ORF vs 14.5 m SOR) and Total Patient OR Flowtime (79.5 m ORF vs 108.9 m SOR) were all shorter in the ORF (P < .05 for all comparisons). The median cost/patient was $3,165 in the ORF (interquartile range, $1,978 to $4,426) versus $2,645 in SORs (interquartile range, $1,823 to $3,908) (P = ns). The potential change in patient throughput for the ORF was 2 additional patients/day. This improved throughput was primarily attributable to a marked reduction in the non-operative time (ie, those activities commonly accounting for "turnover time") rather than facilitation of faster operations. The incremental cost-effectiveness ratio of ORF was $260 (interquartile range, $180 to $283). CONCLUSION: The redesigned perioperative system improves patient flow, allowing more patients to be treated per day. Cost-effectiveness analysis suggests that the additional costs incurred by higher staffing ratios in an ORF environment are likely to be offset by increases in productivity. The benefits of this system are realized when performing multiple, short-to-medium duration procedures (eg, <120 m).


Asunto(s)
Quirófanos/organización & administración , Atención al Paciente , Carga de Trabajo , Análisis Costo-Beneficio , Costos y Análisis de Costo , Humanos , Administración del Tiempo
20.
Anesth Analg ; 102(2): 535-41, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428557

RESUMEN

Most hospital policies prohibiting the use of wireless devices cite reports of disruption of medical equipment by cellular telephones. There have been no studies to determine whether mobile telephones may have a beneficial impact on safety. At the 2003 meeting of the American Society of Anesthesiologists 7878 surveys were distributed to attendees. The five-question survey polled anesthesiologists regarding modes of communication used in the operating room/intensive care unit and experience with communications delays and medical errors. Survey reliability was verified using test-retest analysis and proportion agreement in a convenience sample of 17 anesthesiologists. Four-thousand-eighteen responses were received. The test-retest reliability of the survey instrument was excellent (Kappa = 0.75; 95% confidence interval, 0.56-0.94). Sixty-five percent of surveyed anesthesiologists reported using pagers as their primary mode of communications, whereas only 17% used cellular telephones. Forty-five percent of respondents who use pagers reported delays in communications compared with 31% of cellular telephone users. Cellular telephone use by anesthesiologists is associated with a reduction in the risk of medical error or injury resulting from communication delay (relative risk = 0.78; 95% confidence interval, 0.6234-0.9649). The small risks of electromagnetic interference between mobile telephones and medical devices should be weighed against the potential benefits of improved communication.


Asunto(s)
Teléfono Celular , Cuidados Críticos , Sistemas de Comunicación en Hospital , Anestesiología , Recolección de Datos , Campos Electromagnéticos , Equipos y Suministros de Hospitales , Humanos , Unidades de Cuidados Intensivos , Errores Médicos/prevención & control , Quirófanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA