Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(2): e0165523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38214547

RESUMEN

Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.


Asunto(s)
Infecciones por VIH , VIH-1 , Provirus , Niño , Femenino , Humanos , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Carga Viral , Integración Viral
2.
Sex Transm Dis ; 49(11): 790-793, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35312670

RESUMEN

ABSTRACT: In New York City, 91% of sexually transmitted infection clinic patients reported preexposure prophylaxis (PrEP) use that matched the detection of PrEP in their serum. Self-report had 80% sensitivity and 96% specificity ( κ = 0.79) compared with measured PrEP. Our findings suggest that self-report may be a valid indicator of PrEP uptake.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Profilaxis Pre-Exposición , Salud Sexual , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Humanos , Masculino , Ciudad de Nueva York/epidemiología , Autoinforme
3.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626677

RESUMEN

Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Ratones , Filogenia , Bazo/inmunología , Bazo/virología , Carga Viral/inmunología , Carga Viral/fisiología , Viremia/inmunología , Viremia/virología , Latencia del Virus/inmunología , Replicación Viral/inmunología
4.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375583

RESUMEN

Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Anticuerpos ampliamente neutralizantes/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antivirales/uso terapéutico , Interacciones Huésped-Patógeno/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico
5.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209173

RESUMEN

Efforts to cure human immunodeficiency virus (HIV) infection are obstructed by reservoirs of latently infected CD4+ T cells that can reestablish viremia. HIV-specific broadly neutralizing antibodies (bNAbs), defined by unusually wide neutralization breadths against globally diverse viruses, may contribute to the elimination of these reservoirs by binding to reactivated cells, thus targeting them for immune clearance. However, the relationship between neutralization of reservoir isolates and binding to corresponding infected primary CD4+ T cells has not been determined. Thus, the extent to which neutralization breadths and potencies can be used to infer the corresponding parameters of infected cell binding is currently unknown. We assessed the breadths and potencies of bNAbs against 36 viruses reactivated from peripheral blood CD4+ T cells from antiretroviral (ARV)-treated HIV-infected individuals by using paired neutralization and infected cell binding assays. Single-antibody breadths ranged from 0 to 64% for neutralization (80% inhibitory concentration [IC80] of ≤10 µg/ml) and from 0 to 89% for binding, with two-antibody combinations (results for antibody combinations are theoretical/predicted) reaching levels of 0 to 83% and 50 to 100%, respectively. Infected cell binding correlated with virus neutralization for 10 of 14 antibodies (e.g., for 3BNC117, r = 0.82 and P < 0.0001). Heterogeneity was observed, however, with a lack of significant correlation for 2G12, CAP256.VRC26.25, 2F5, and 4E10. Our results provide guidance on the selection of bNAbs for interventional cure studies, both by providing a direct assessment of intra- and interindividual variabilities in neutralization and infected cell binding in a novel cohort and by defining the relationships between these parameters for a panel of bNAbs.IMPORTANCE Although antiretroviral therapies have improved the lives of people who are living with HIV, they do not cure infection. Efforts are being directed towards harnessing the immune system to eliminate the virus that persists, potentially resulting in virus-free remission without medication. HIV-specific antibodies hold promise for such therapies owing to their ability to both prevent the infection of new cells (neutralization) and direct the killing of infected cells. We isolated 36 HIV strains from individuals whose virus was suppressed by medication and tested 14 different antibodies for neutralization of these viruses and for binding to cells infected with the same viruses (critical for engaging natural killer cells). For both neutralization and infected cell binding, we observed variation both between individuals and amongst different viruses within an individual. For most antibodies, neutralization activity correlated with infected cell binding. These data provide guidance on the selection of antibodies for clinical trials.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Viremia/inmunología , Adulto , Citotoxicidad Celular Dependiente de Anticuerpos , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Viremia/virología
6.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28794022

RESUMEN

Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Infecciones por VIH/inmunología , VIH-1/fisiología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/virología , Animales , Anticuerpos Biespecíficos/inmunología , Antígenos CD4/inmunología , Modelos Animales de Enfermedad , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Macaca mulatta , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Latencia del Virus
7.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077649

RESUMEN

Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and ß chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.


Asunto(s)
VIH-1/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Células Cultivadas , Clonación Molecular , Epítopos de Linfocito T/inmunología , Expresión Génica , Humanos , Receptores de Antígenos de Linfocitos T/genética
8.
J Virol ; 89(18): 9559-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26157126

RESUMEN

UNLABELLED: Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4(+) T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4(+) T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ~4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4(+) T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. IMPORTANCE: Multiple epidemiological studies have reported that genital herpes simplex virus 2 (HSV-2) infection increases the risk of HIV-1 sexual acquisition by severalfold. Understanding the underlying mechanisms by which HSV-2 facilitates HIV-1 infection and optimizing the efficacy of therapies to inhibit HIV-1 infection during HSV-2 coinfection should contribute to reducing HIV-1 transmission. Using our novel transgenic hCD4/R5/cT1 mouse model infectible with HIV-1, we demonstrated that HSV-2 infection enhances vaginal transmission and dissemination of HIV-1 infection while stimulating recruitment and activation of CD4(+) T cells and dendritic cells in the lower genital tract. HIV acquisition by hCD4/R5/cT1 mice vaginally coinfected with HSV-2 could be completely prevented in almost half the mice by preexposure prophylaxis (PrEP) with a novel gel containing tenofovir disoproxil fumarate (TDF), the tenofovir prodrug, but not with the tenofovir microbicide gel utilized in CAPRISA-004, VOICE, and FACTS-001 clinical trials. The hCD4/R5/cT1 mice represent a new preclinical mouse model to evaluate vaginal HIV-1 acquisition.


Asunto(s)
Antivirales/farmacología , Coinfección , Infecciones por VIH , VIH-1/inmunología , Herpes Genital , Herpesvirus Humano 2/inmunología , Animales , Coinfección/genética , Coinfección/inmunología , Coinfección/patología , Coinfección/prevención & control , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/prevención & control , Herpes Genital/genética , Herpes Genital/inmunología , Herpes Genital/patología , Herpes Genital/prevención & control , Humanos , Masculino , Ratones , Ratones Transgénicos , Vagina/inmunología , Vagina/patología , Vagina/virología , Cremas, Espumas y Geles Vaginales/farmacología
9.
J Virol ; 89(12): 6264-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833053

RESUMEN

UNLABELLED: Natural killer (NK) cells with anti-HIV-1 activity may inhibit HIV-1 replication and dissemination during acute HIV-1 infection. We hypothesized that the capacity of NK cells to suppress acute in vivo HIV-1 infection would be augmented by activating them via treatment with an interleukin-15 (IL-15) superagonist, IL-15 bound to soluble IL-15Rα, an approach that potentiates human NK cell-mediated killing of tumor cells. In vitro stimulation of human NK cells with a recombinant IL-15 superagonist significantly induced their expression of the cytotoxic effector molecules granzyme B and perforin; their degranulation upon exposure to K562 cells, as indicated by cell surface expression of CD107a; and their capacity to lyse K562 cells and HIV-1-infected T cells. The impact of IL-15 superagonist-induced activation of human NK cells on acute in vivo HIV-1 infection was investigated by using hu-spl-PBMC-NSG mice, NOD-SCID-IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMCs) which develop productive in vivo infection after intrasplenic inoculation with HIV-1. IL-15 superagonist treatment potently inhibited acute HIV-1 infection in hu-spl-PBMC-NSG mice even when delayed until 3 days after intrasplenic HIV-1 inoculation. Removal of NK cells from human PBMCs prior to intrasplenic injection into NSG mice completely abrogated IL-15 superagonist-mediated suppression of in vivo HIV-1 infection. Thus, the in vivo activation of NK cells, integral mediators of the innate immune response, by treatment with an IL-15 superagonist increases their anti-HIV activity and enables them to potently suppress acute in vivo HIV-1 infection. These results indicate that in vivo activation of NK cells may represent a new immunotherapeutic approach to suppress acute HIV-1 infection. IMPORTANCE: Epidemiological studies have indicated that NK cells contribute to the control of HIV-1 infection, and in vitro studies have demonstrated that NK cells can selectively kill HIV-1-infected cells. We demonstrated that in vivo activation of NK cells by treatment with an IL-15 superagonist that potently stimulates the antitumor activity of NK cells markedly inhibited acute HIV-1 infection in humanized mice, even when activation of NK cells by IL-15 superagonist treatment is delayed until 3 days after HIV-1 inoculation. NK cell depletion from PBMCs prior to their intrasplenic injection abrogated the suppression of in vivo HIV-1 infection observed in humanized mice treated with the IL-15 superagonist, demonstrating that activated human NK cells were mediating IL-15 superagonist-induced inhibition of acute HIV-1 infection. Thus, in vivo immunostimulation of NK cells, a promising therapeutic approach for cancer therapy, may represent a new treatment modality for HIV-1-infected individuals, particularly in the earliest stages of infection.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Interleucina-15/antagonistas & inhibidores , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID
10.
Proc Natl Acad Sci U S A ; 109(17): 6543-8, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493227

RESUMEN

HIV-1 protease is an important target for the treatment of HIV/AIDS. However, drug resistance is a persistent problem and new inhibitors are needed. An approach toward understanding enzyme chemistry, the basis of drug resistance, and the design of powerful inhibitors is to establish the structure of enzymatic transition states. Enzymatic transition structures can be established by matching experimental kinetic isotope effects (KIEs) with theoretical predictions. However, the HIV-1 protease transition state has not been previously resolved using these methods. We have measured primary (14)C and (15)N KIEs and secondary (3)H and (18)O KIEs for native and multidrug-resistant HIV-1 protease (I84V). We observed (14)C KIEs ((14)V/K) of 1.029 ± 0.003 and 1.025 ± 0.005, (15)N KIEs ((15)V/K) of 0.987 ± 0.004 and 0.989 ± 0.003, (18)O KIEs ((18)V/K) of 0.999 ± 0.003 and 0.993 ± 0.003, and (3)H KIEs ((3)V/K) KIEs of 0.968 ± 0.001 and 0.976 ± 0.001 for the native and I84V enzyme, respectively. The chemical reaction involves nucleophilic water attack at the carbonyl carbon, proton transfer to the amide nitrogen leaving group, and C-N bond cleavage. A transition structure consistent with the KIE values involves proton transfer from the active site Asp-125 (1.32 Å) with partial hydrogen bond formation to the accepting nitrogen (1.20 Å) and partial bond loss from the carbonyl carbon to the amide leaving group (1.52 Å). The KIEs measured for the native and I84V enzyme indicate nearly identical transition states, implying that a true transition-state analogue should be effective against both enzymes.


Asunto(s)
Proteasa del VIH/metabolismo , Resistencia a Múltiples Medicamentos , Farmacorresistencia Viral , Proteasa del VIH/química , VIH-1/efectos de los fármacos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Protones
11.
J Infect Dis ; 209(4): 510-22, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23990571

RESUMEN

BACKGROUND: Epidemiological studies consistently demonstrate synergy between herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1). Higher HIV-1 loads are observed in coinfected individuals, and conversely, HIV-1 is associated with more-severe herpetic disease. A small animal model of coinfection would facilitate identification of the biological mechanisms underlying this synergy and provide the opportunity to evaluate interventions. METHODS: Mice transgenic for HIV-1 provirus and human cyclin T1 under the control of a CD4 promoter (JR-CSF/hu-cycT1) were intravaginally infected with HSV-2 and evaluated for disease progression, HIV shedding, and mucosal immune responses. RESULTS: HSV-2 infection resulted in higher vaginal HIV loads and genital tissue expression of HIV RNA, compared with HSV-uninfected JR-CSF/hu-cycT1 mice. There was an increase in genital tract inflammatory cells, cytokines, chemokines, and interferons in response to HSV-2, although the kinetics of the response were delayed in HIV-transgenic, compared with control mice. Moreover, the JR-CSF/hu-cycT1 mice exhibited earlier and more-severe neurological disease. The latter was associated with downregulation of secretory leukocyte protease inhibitor expression in neuronal tissue, a molecule with antiinflammatory, antiviral, and neuroprotective properties. CONCLUSIONS: JR-CSF/hu-cycT1 mice provide a valuable model to study HIV/HSV-2 coinfection and identify potential mechanisms by which HSV-2 facilitates HIV-1 transmission and HIV modulates HSV-2-mediated disease.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Herpes Genital/virología , Herpesvirus Humano 2/fisiología , Enfermedades del Sistema Nervioso/virología , Animales , Coinfección/virología , Citocinas/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Infecciones por VIH/inmunología , Herpes Genital/inmunología , Histocitoquímica , Inflamación , Ganglios Linfáticos/inmunología , Ratones , Ratones Transgénicos , Enfermedades del Sistema Nervioso/inmunología , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Vagina/química , Vagina/virología , Replicación Viral , Esparcimiento de Virus
12.
Curr Opin HIV AIDS ; 19(4): 169-178, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695148

RESUMEN

PURPOSE OF REVIEW: Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. RECENT FINDINGS: HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. SUMMARY: Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.


Asunto(s)
Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , VIH-1/inmunología , Linfocitos T/inmunología
13.
Methods Mol Biol ; 2807: 287-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743236

RESUMEN

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Asunto(s)
Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Infecciones por VIH/virología , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Transducción Genética
14.
Nat Aging ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867059

RESUMEN

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.

15.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645749

RESUMEN

Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.

16.
J Acquir Immune Defic Syndr ; 90(4): 382-387, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35357337

RESUMEN

BACKGROUND: HIV-uninfected persons being evaluated for sexually transmitted infections (STIs) may be good HIV pre-exposure prophylaxis (PrEP) candidates. We measured PrEP use in a sentinel STI patient population. DESIGN: Cross-sectional study, New York City Sexual Health Clinics (January 2019-June 2019). METHODS: Remnant serum samples from 644 HIV-uninfected men who have sex with men (MSM) and 97 women diagnosed with chlamydia, gonorrhea, and/or early syphilis were assayed for tenofovir and emtricitabine levels using a validated liquid chromatography-mass spectrometry assay. Using paired test results and medical records, we assessed (1) prevalence and (2) correlates of PrEP use on the day of STI diagnosis (adjusted prevalence ratios [aPRs]). RESULTS: PrEP use among 741 patients was 32.7% [95% confidence interval (CI): 29.3 to 36.0]; 37.3% for MSM and 2.1% for women. PrEP use was high among White MSM (46.8%) and lowest among women. Among MSM with rectal chlamydia/gonorrhea or early syphilis, PrEP use was associated with age [aPR = 1.7 (95% CI: 1.2 to 2.4) for ages 25-34 years and aPR = 2.0 (1.4 to 2.9) for ages 35-44 years, vs. 15 to 24 years]; number of recent sex partners [aPR = 1.4 (1.0 to 2.0) for 3-5 partners, aPR = 2.1 (1.5 to 3.0) for 6-10 partners, aPR = 2.2 (1.6 to 3.1) for >10 partners, vs. ≤2 partners]; having sex/needle-sharing partners with HIV [aPR = 1.4 (1.1-1.7)]; and inconsistent condom use [aPR = 3.3 (1.8-6.1)]. Race/ethnicity, past-year STI diagnosis, and postexposure prophylaxis use were not associated. CONCLUSIONS: One in 3 people with newly diagnosed STIs had detectable serum PrEP, and PrEP use was exceedingly rare among women. Routinely collected remnant samples can be used to measure PrEP use in populations at high risk of HIV acquisition.


Asunto(s)
Gonorrea , Infecciones por VIH , Profilaxis Pre-Exposición , Enfermedades del Recto , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Sífilis , Adulto , Estudios Transversales , Femenino , Gonorrea/epidemiología , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Humanos , Masculino , Profilaxis Pre-Exposición/métodos , Enfermedades de Transmisión Sexual/epidemiología , Enfermedades de Transmisión Sexual/prevención & control , Sífilis/epidemiología
17.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345941

RESUMEN

HIV-specific chimeric antigen receptor-T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4+ T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7+ stem cell-like/central memory T cells (TSCM/TCM) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4+ T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores Quiméricos de Antígenos , Animales , Ratones , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Leucocitos Mononucleares , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto
18.
Eur J Immunol ; 40(7): 1950-62, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20432235

RESUMEN

HLA-A 0201-restricted virus-specific CD8(+) CTL do not appear to control HIV effectively in vivo. To enhance the immunogenicity of a highly conserved subdominant epitope, TV9 (TLNAWVKVV, p24 Gag(19-27)), mimotopes were designed by screening a large combinatorial nonapeptide library with TV9-specific CTL primed in vitro from healthy donors. A mimic peptide with a low binding affinity to HLA-A 0201, TV9p6 (KINAWIKVV), was studied further. Parallel cultures of in vitro-primed CTL showed that TV9p6 consistently activated cross-reactive and equally functional CTL as measured by cytotoxicity, cytokine production and suppression of HIV replication in vitro. Comparison of TCRB gene usage between CTL primed from the same donors with TV9 or TV9p6 revealed a degree of clonal overlap in some cases and an example of a conserved TCRB sequence encoded distinctly at the nucleotide level between individuals (a "public" TCR); however, in the main, distinct clonotypes were recruited by each peptide antigen. These findings indicate that mimotopes can mobilize functional cross-reactive clonotypes that are less readily recruited from the naïve T-cell pool by the corresponding WT epitope. Mimotope-induced repertoire diversification could potentially override subdominance under certain circumstances and enhance vaccine-induced responses to conserved but poorly immunogenic determinants within the HIV proteome.


Asunto(s)
Vacunas contra el SIDA , Linfocitos T CD8-positivos/metabolismo , ADN/análisis , VIH-1/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Proliferación Celular , Células Clonales , Secuencia Conservada/genética , Mapeo Epitopo , Proteína p24 del Núcleo del VIH/química , Proteína p24 del Núcleo del VIH/metabolismo , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Biblioteca de Péptidos , Unión Proteica
19.
J Virol ; 84(13): 6645-53, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20410262

RESUMEN

Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/gamma(c)(null) mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/gamma(c)(null) mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1(JR-CSF), mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/gamma(c)(null) mice inoculated with equivalent high-titer HIV-1(JR-CSF). These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Terapia Genética/métodos , Infecciones por VIH/terapia , VIH-1/inmunología , Células Madre Hematopoyéticas/inmunología , Inmunoterapia/métodos , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , Vectores Genéticos , Humanos , Lentivirus/genética , Infecciones por Lentivirus , Ratones , Ratones Endogámicos NOD , Ratones SCID , Bazo/virología , Carga Viral
20.
Am J Pathol ; 177(5): 2446-58, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20889566

RESUMEN

Insulin-like growth factor 2 receptor (IGF2R), also known as cation-independent mannose 6-phosphate (M6P) receptor, is a transmembrane glycoprotein localized in the trans-Golgi region and is involved in targeting both M6P-bearing enzymes and IGF2 to the lysosomal compartment. During development, IGF2R plays a crucial role in removing excess growth factors from both tissue and blood. Due to the perinatal lethality of the global Igf2r knockout, the function of IGF2R in adults, particularly in the CNS, is not known. We made a novel observation that IGF2R is highly expressed in microglial nodules in human brains with HIV encephalitis. In vitro, microglial IGF2R expression was uniquely enhanced by IFNγ among the several cytokines and TLR ligands examined. Furthermore, in several in vitro models of HIV infection, including human and murine microglia, macrophages, and nonmacrophage cells, IGF2R is repeatedly shown to be a positive regulator of HIV infection. IGF2R RNAi also down-regulated the production of the IP-10 chemokine in HIV-infected human microglia. Injection of VSVg env HIV into mouse brain induced HIV p24 expression in neurons, the only cell type normally expressing IGF2R in the adult brain. Our results demonstrate a novel role for IGF2R as an inducible microglial protein involved in regulation of HIV and chemokine expression. Mice with the Csf1r- driven Igf2r knockout should be useful for the investigation of macrophage-specific IGF2R function.


Asunto(s)
Complejo SIDA Demencia/fisiopatología , VIH/fisiología , Interferón gamma/metabolismo , Microglía/metabolismo , Receptor IGF Tipo 2/metabolismo , Replicación Viral , Complejo SIDA Demencia/patología , Complejo SIDA Demencia/virología , Animales , Astrocitos/citología , Astrocitos/virología , Encéfalo/citología , Encéfalo/patología , Encéfalo/virología , Línea Celular , Células Cultivadas , VIH/genética , VIH/ultraestructura , Infecciones por VIH/patología , Infecciones por VIH/fisiopatología , Humanos , Macrófagos/citología , Macrófagos/virología , Ratones , Ratones Noqueados , Microglía/citología , Microglía/virología , Interferencia de ARN , Receptor IGF Tipo 2/genética , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA