Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 46(15): 7586-7611, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30011030

RESUMEN

The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast's protein-protein and protein-DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.


Asunto(s)
Ciclo Celular/genética , Metabolismo Energético/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Segregación Cromosómica/genética , Mitocondrias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN de Hongos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Transcripción Genética/genética
2.
Front Cell Neurosci ; 17: 1166641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868194

RESUMEN

The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.

3.
Nat Commun ; 6: 6643, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25851096

RESUMEN

The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis.


Asunto(s)
Segregación Cromosómica/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Anafase/genética , Replicación del ADN/genética , Regulación hacia Abajo , Fase S/genética , Saccharomyces cerevisiae
4.
Nat Cell Biol ; 14(6): 614-24, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22561345

RESUMEN

Kinetochores attach the replicated chromosomes to the mitotic spindle and orchestrate their transmission to the daughter cells. Kinetochore-spindle binding and chromosome segregation are mediated by the multi-copy KNL1(Spc105), MIS12(Mtw1) and NDC80(Ndc80) complexes that form the so-called KMN network. KMN-spindle attachment is regulated by the Aurora B(Ipl1) and MPS1(Mps1) kinases. It is unclear whether other mechanisms exist that support KMN activity during the cell cycle. Using budding yeast, we show that kinetochore protein Cnn1 localizes to the base of the Ndc80 complex and promotes a functionally competent configuration of the KMN network. Cnn1 regulates KMN activity in a spatiotemporal manner by inhibiting the interaction between its complexes. Cnn1 activity peaks in anaphase and is driven by the Cdc28, Mps1 and Ipl1 kinases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Anafase , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo
5.
Proc Natl Acad Sci U S A ; 104(3): 991-6, 2007 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-17215366

RESUMEN

Ullrich congenital muscular dystrophy is a severe genetically and clinically heterogeneous muscle disorder linked to collagen VI deficiency. The pathogenesis of the disease is unknown. To assess the potential role of mitochondrial dysfunction in the onset of muscle fiber death in this form of dystrophy, we studied biopsies and myoblast cultures obtained from patients with different genetic defects of collagen VI and variable clinical presentations of the disease. We identified a latent mitochondrial dysfunction in myoblasts from patients with Ullrich congenital muscular dystrophy that matched an increased occurrence of spontaneous apoptosis. Unlike those in myoblasts from healthy donors, mitochondria in cells from patients depolarized upon addition of oligomycin and displayed ultrastructural alterations that were worsened by treatment with oligomycin. The increased apoptosis, the ultrastructural defects, and the anomalous response to oligomycin could be normalized by Ca(2+) chelators, by plating cells on collagen VI, and by treatment with cyclosporin A or with the specific cyclophilin inhibitor methylAla(3)ethylVal(4)-cyclosporin, which does not affect calcineurin activity. Here we demonstrate that mitochondrial dysfunction plays an important role in muscle cell wasting in Ullrich congenital muscular dystrophy. This study represents an essential step toward a pharmacological therapy of Ullrich congenital muscular dystrophy with cyclosporin A and methylAla(3)ethylVal(4) cyclosporin.


Asunto(s)
Ciclosporinas/uso terapéutico , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/etiología , Distrofias Musculares/metabolismo , Adulto , Apoptosis , Células Cultivadas , Niño , Preescolar , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Humanos , Microscopía Electrónica , Distrofias Musculares/congénito , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA