Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2220180120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459524

RESUMEN

Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Secuencia de Aminoácidos , Eucariontes/metabolismo , Polímeros
2.
Nat Mater ; 22(3): 338-344, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36646793

RESUMEN

Transport of excitons and charge carriers in molecular systems can be enhanced by coherent coupling to photons, giving rise to the formation of hybrid excitations known as polaritons. Such enhancement has far-reaching technological implications; however, the enhancement mechanism and the transport nature of these hybrid excitations remain elusive. Here we map the ultrafast spatiotemporal dynamics of polaritons formed by mixing surface-bound optical waves with Frenkel excitons in a self-assembled molecular layer, resolving polariton dynamics in energy/momentum space. We find that the interplay between the molecular disorder and long-range correlations induced by coherent mixing with light leads to a mobility transition between diffusive and ballistic transport, which can be controlled by varying the light-matter composition of the polaritons. Furthermore, we show that coupling to light enhances the diffusion coefficient of molecular excitons by six orders of magnitude and even leads to ballistic flow at two-thirds the speed of light.

3.
J Org Chem ; 88(22): 15983-15988, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37906127

RESUMEN

We report the synthesis of a series of the oxygen-depleted conjugated 5,5'-Bicalix[4]arene compounds bearing various substituents at the terminal positions of the conjugated chain and their fluorescence response to the presence of a cationic N-methylpyridinium guest. The complexation of this cation within the bicalixarene cavity results in the fluorescence quenching, with the host molecules bearing electron-donating groups demonstrating a stronger fluorescence response. These results show the importance of the electronic effects on the host-guest complexation within the hydrophobic calixarene scaffolds.

4.
ACS Omega ; 9(2): 3000-3005, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250390

RESUMEN

A planar Fabry-Perot cavity with intermirror spacing of d ≪ λ is explored for its "zero-order mode" terahertz transmission. The enhanced transmission observed as d → 0 indicates that such cavities satisfy the resonance conditions across a broad terahertz bandwidth. The experimental signatures from this elusive, "technically challenging" regime are evidenced using time-domain terahertz spectroscopy and are complemented by numerical calculations. The results raise intriguing possibilities for terahertz field modulation and pave new paths for strong coupling of multiple transition frequencies simultaneously.

5.
J Phys Chem Lett ; 11(10): 3803-3808, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32329347

RESUMEN

Rayleigh scattering is usually considered to be the elastic scattering of photons from subwavelength physical objects, such as small particles or molecules. Here, we present a quantitative spectroscopic study of the scattering properties of molecules embedded in an optical cavity under strong coupling conditions, where the collective interaction between the molecules and the cavity gives rise to composite light-matter excitations known as cavity polaritons. We show that the polaritonic states exhibit strong resonant Rayleigh scattering, which depends on both the coupling strength and detuning and reaching ∼25% efficiency. Since the polaritonic wave functions in such systems are delocalized, our observations correspond to the collective scattering of each photon from a large ensemble of molecules.

6.
Nat Commun ; 10(1): 3248, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324768

RESUMEN

Several years ago, strong coupling between electronic molecular transitions and photonic structures was shown to modify the electronic landscape of the molecules and affect their chemical behavior. Since then, this concept has evolved into a new field known as polaritonic chemistry. An important ingredient in the progress of this field was the demonstration of strong coupling with intra-molecular vibrations, which enabled the modification of processes occurring at the electronic ground-state. Here we demonstrate strong coupling with collective, inter-molecular vibrations occurring in organic materials in the low-terahertz region ([Formula: see text]1012 Hz). Using a cavity filled with α-lactose molecules, we measure the temporal evolution and observe coherent Rabi oscillations, corresponding to a splitting of 68 GHz. These results take strong coupling into a new class of materials and processes, including skeletal polymer motions, protein dynamics, metal organic frameworks and other materials, in which collective, spatially extended degrees of freedom participate in the dynamics.

7.
J Magn Reson ; 165(1): 33-48, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14568515

RESUMEN

A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me(3)TACN)(2)Mn(II)(2)(mu-OAc)(3)]BPh(4) (1) (Me(3)TACN=N, N('),N(")-trimethyl-1,4,7-triazacyclononane; OAc=acetate(1-); BPh(4)=tetraphenylborate(1-)) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined (J=-1.5+/-0.3 cm(-1); H(ex)=-2JS(1).S(2)) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Compuestos de Manganeso/química , Manganeso/química , Modelos Moleculares , Simulación por Computador , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA