Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Naturwissenschaften ; 110(4): 31, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37389663

RESUMEN

Plant strategies against herbivores are classically divided into chemical, physical, biotic defences. However, little is known about the relative importance of each type of plant defence, especially in the same species. Using the myrmecophyte Triplaris americana (both with and without ants), and the congeneric non-myrmecophyte T. gardneriana, we tested whether ant defence is more effective than other defences of naturally ant-free myrmecophytes and the non-myrmecophyte congeneric species, all spatially co-occurring. In addition, we investigated how plant traits vary among plant groups, and how these traits modulate herbivory. We sampled data on leaf area loss and plant traits from these tree groups in the Brazilian Pantanal floodplain, and found that herbivory is sixfold lower in plants with ants than in ant-free plants, supporting a major role of biotic defences against herbivory. Whereas ant-free plants had more physical defences (sclerophylly and trichomes), they had little effect on herbivory-only sclerophylly modulated herbivory, but with opposite effects depending on ants' presence and species identity. Despite little variation in the chemicals among plant groups, tannin concentrations and δ13C signatures negatively affected herbivory in T. americana plants with ants and in T. gardneriana, respectively. We showed that ant defence in myrmecophytic systems is the most effective against herbivory, as the studied plants could not fully compensate the lack of this biotic defence. We highlight the importance of positive insect-plant interactions in limiting herbivory, and therefore potentially plant fitness.


Asunto(s)
Hormigas , Árboles , Animales , Brasil , Herbivoria , Fenotipo
2.
PLoS One ; 19(3): e0293377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451997

RESUMEN

Myrmecochory-seed dispersal by ants-is a mutualistic interaction in which ants attracted by seed appendices take them away from the parental plant location, where seeds usually have better development odds. Not all ant species benefit plants, and the mechanisms of those divergent outcomes are still unclear, especially from the perspective of microbial third parties. Here, we explore the effects of seed manipulation on fungi communities promoted by two ant species with contrasting effects on seed germination and antimicrobial cleaning strategies. We hypothesize that: i) fungi richness is higher in seeds manipulated by Acromyrmex subterraneus (species that negatively affect seed germination), followed by unmanipulated seeds and seeds manipulated by Atta sexdens (ant species that increase seed germination) and ii) seeds manipulated by A. sexdens, Ac. subterraneus and unmanipulated seeds present dissimilar fungi compositions. We identified fungal morphotypes in three groups of seeds: i) manipulated by A. sexdens; ii) manipulated by Ac. subterraneus; iii) unmanipulated. Seeds manipulated by Ac. subterraneus exhibited higher fungal richness than those manipulated by A. sexdens and unmanipulated seeds, indicating that the ant species known to impair germination increases the fungal load on seeds. Additionally, we found that A. sexdens ants were unable to reduce fungal richness compared to unmanipulated seeds. Furthermore, fungal composition differed among all three treatments. Our results underscore the significance of ant species identity in shaping the fungal communities associated with myrmecochorous seeds. Given the potential influence of microbial infection on seed fate, we suggest considering manipulation strategies when evaluating the overall quality of an ant as a seed disperser.


Asunto(s)
Hormigas , Dispersión de Semillas , Animales , Semillas , Plantas , Germinación , Hongos
3.
Ecology ; 102(4): e03301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565639

RESUMEN

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA