Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Physiol Plant ; 176(2): e14257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504376

RESUMEN

The plant hormone jasmonic acid (JA) is a signalling compound involved in the regulation of cellular defence and development in plants. In this study, we investigated the roles of a JA-responsive MYB transcription factor, JMTF1, in the JA-regulated defence response against rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). JMTF1 did not interact with any JASMONATE ZIM-domain (JAZ) proteins. Transgenic rice plants overexpressing JMTF1 showed a JA-hypersensitive phenotype and enhanced resistance against Xoo. JMTF1 upregulated the expression of a peroxidase, OsPrx26, and monoterpene synthase, OsTPS24, which are involved in the biosynthesis of lignin and antibacterial monoterpene, γ-terpinene, respectively. OsPrx26 was mainly expressed in the vascular bundle. Transgenic rice plants overexpressing OsPrx26 showed enhanced resistance against Xoo. In addition to the JA-hypersensitive phenotype, the JMTF1-overexpressing rice plants showed a typical auxin-related phenotype. The leaf divergence and shoot gravitropic responses were defective, and the number of lateral roots decreased significantly in the JMTF1-overexpressing rice plants. JMTF1 downregulated the expression of auxin-responsive genes but upregulated the expression of OsIAA13, a suppressor of auxin signalling. The rice gain-of-function mutant Osiaa13 showed high resistance against Xoo. Transgenic rice plants overexpressing OsEXPA4, a JMTF1-downregulated auxin-responsive gene, showed increased susceptibility to Xoo. JMTF1 is selectively bound to the promoter of OsPrx26 in vivo. These results suggest that JMTF1 positively regulates disease resistance against Xoo by coordinating crosstalk between JA- and auxin-signalling in rice.


Asunto(s)
Oryza , Xanthomonas , Oryza/metabolismo , Transducción de Señal/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Resistencia a la Enfermedad/genética , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675223

RESUMEN

Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, ß-cyclocitral (ß-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice (Oryza sativa L.). JA-induced accumulation of ß-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with ß-cyc induced resistance against Xoo and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and ß-cyc treatment, resulting in a decrease in ABA levels in rice. ß-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced ß-cyc both in vitro and in planta. These results suggest that ß-cyc plays an important role in the JA-mediated resistance against Xoo in rice.


Asunto(s)
Oryza , Xanthomonas , Ácido Abscísico/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
3.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476681

RESUMEN

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Asunto(s)
Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805251

RESUMEN

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine: JA-Ile), are signaling compounds involved in the regulation of cellular defense and development in plants [...].


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Transducción de Señal
5.
Plant Cell Rep ; 39(9): 1175-1184, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32424468

RESUMEN

KEY MESSAGE: OsbHLH034 acts as a positive regulator in jasmonate signaling in rice. Jasmonic acid (JA) is a plant hormone under strict regulation by various transcription factors (TFs) that acts as a signaling compound in the regulation of plant defense responses and development. Here, we report that a basic helix-loop-helix (bHLH)-type TF, OsbHLH034, plays an important role in the JA-mediated resistance response against rice bacterial blight caused by Xanthomonas oryzae pv. oryzae. The expression of OsbHLH034 was upregulated at a late phase after JA treatment. OsbHLH034 interacted with a Jasmonate ZIM-domain (JAZ) protein, OsJAZ9, in both plant and yeast cells. Transgenic rice plants overexpressing OsbHLH034 exhibited a JA-hypersensitive phenotype and increased resistance against rice bacterial blight. Conversely, OsbHLH034-overexpressing plants exhibited high sensitivity to salt stress. The expression of some JA-responsive secretory-type peroxidase genes was upregulated in the OsbHLH034-overexpressing rice plants. Concomitantly, the lignin content significantly increased in these transgenic plants compared to that in the wild-type. These results indicate that OsbHLH034 acts as a positive regulator of the JA-mediated defense response in rice.


Asunto(s)
Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Lignina/biosíntesis , Oryza/fisiología , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/efectos de los fármacos , Oxilipinas/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xanthomonas/patogenicidad
6.
Plant Cell Rep ; 39(4): 489-500, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31900582

RESUMEN

KEY MESSAGE: OsNINJA1-interacting protein, OsSRO1a, acts as a mediator that suppresses OsMYC2 activity in response to JA. Jasmonic acid (JA) is an important plant hormone for the stable growth and development of higher plants. The rice gene NOVEL INTERACTOR OF JAZ1 (OsNINJA1) interacts with Jasmonate ZIM-domain (JAZ) proteins and is a repressor of JA signaling. In this study, we identified several OsNINJA1-interacting proteins in rice from a yeast two-hybrid screen. Among the newly identified genes, we focused on SIMILAR TO RCD ONE1a (OsSRO1a) and investigated its role in JA signaling. Full-length OsSRO1a interacted with OsNINJA1 in plant cells but not in yeast cells. OsSRO1a also interacted with OsMYC2, a positive transcription factor in JA signaling, in both plant and yeast cells. The expression of OsSRO1a was upregulated at a late phase after JA treatment. Transgenic rice plants overexpressing OsSRO1a exhibited JA-insensitive phenotypes. In wild-type plants, JA induces resistance against rice bacterial blight, but this phenotype was suppressed in the OsSRO1a-overexpressing plants. Furthermore, the degradation of chlorophyll under dark-induced senescence conditions and the JA-induced upregulation of OsMYC2-responsive genes were suppressed in the OsSRO1a-overexpressing plants. These results suggest that OsSRO1a is a negative regulator of the OsMYC2-mediated JA signaling pathway in rice.


Asunto(s)
Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Senescencia Celular/genética , Senescencia Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oryza/genética , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/efectos de la radiación , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba
7.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070064

RESUMEN

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine: JA-Ile), are signaling compounds involved in the regulation of cellular defense and development in plants [...].


Asunto(s)
Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
8.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207967

RESUMEN

Jasmonic acid (JA) is a plant hormone that plays an important role in the defense response and stable growth of rice. In this study, we investigated the role of the JA-responsive valine-glutamine (VQ)-motif-containing protein OsVQ13 in JA signaling in rice. OsVQ13 was primarily located in the nucleus and cytoplasm. The transgenic rice plants overexpressing OsVQ13 exhibited a JA-hypersensitive phenotype and increased JA-induced resistance to Xanthomonas oryzae pv. oryzae (Xoo), which is the bacteria that causes rice bacterial blight, one of the most serious diseases in rice. Furthermore, we identified a mitogen-activated protein kinase, OsMPK6, as an OsVQ13-associating protein. The expression of genes regulated by OsWRKY45, an important WRKY-type transcription factor for Xoo resistance that is known to be regulated by OsMPK6, was upregulated in OsVQ13-overexpressing rice plants. The grain size of OsVQ13-overexpressing rice plants was also larger than that of the wild type. These results indicated that OsVQ13 positively regulated JA signaling by activating the OsMPK6-OsWRKY45 signaling pathway in rice.


Asunto(s)
Ciclopentanos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/genética , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Resistencia a la Enfermedad/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/microbiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Xanthomonas/patogenicidad
9.
Planta ; 245(6): 1241-1246, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28424874

RESUMEN

MAIN CONCLUSION: The jasmonic acid (JA)-responsive transcription factor OsMYC2 acts as a positive regulator of leaf senescence by direct regulation of some senescence-associated genes in rice. OsMYC2, a transcription factor (TF), acts as a positive regulator of jasmonic acid (JA) signaling involved in development and defense in rice. Here, we report that OsMYC2 plays an important role in leaf senescence under dark-induced senescence (DIS) conditions. Overexpression of OsMYC2 significantly promoted leaf senescence, indicated by reduction of chlorophyll content under DIS conditions in rice. Leaf senescence under the DIS conditions was negatively regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involved in the JA signaling pathway. OsMYC2 upregulated the expression of some senescence-associated genes (SAGs) and selectively bound to the G-box/G-box-like motifs in the promoters of some SAGs in vivo. These results suggest that OsMYC2 acts as a positive regulator of leaf senescence by direct- or indirect-regulation of SAGs in rice.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
10.
Plant Cell Physiol ; 57(9): 1814-27, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27335352

RESUMEN

JASMONATE ZIM-domain (JAZ) proteins act as transcriptional repressors of jasmonic acid (JA) responses and play a crucial role in the regulation of host immunity in plants. Here, we report that OsMYC2, a JAZ-interacting transcription factor in rice (Oryza sativa L.), plays an important role in the resistance response against rice bacterial blight, which is one of the most serious diseases in rice, caused by Xanthomonas oryzae pv. oryzae (Xoo). The results showed that OsMYC2 interacted with some OsJAZ proteins in a JAZ-interacting domain (JID)-dependent manner. The up-regulation of OsMYC2 in response to JA was regulated by OsJAZ8. Transgenic rice plants overexpressing OsMYC2 exhibited a JA-hypersensitive phenotype and were more resistant to Xoo. A large-scale microarray analysis revealed that OsMYC2 up-regulated OsJAZ10 as well as many other defense-related genes. OsMYC2 selectively bound to the G-box-like motif of the OsJAZ10 promoter in vivo and regulated the expression of early JA-responsive genes, but not of late JA-responsive genes. The nuclear localization of OsMYC2 depended on a nuclear localization signal within JID. Overall, we conclude that OsMYC2 acts as a positive regulator of early JA signals in the JA-induced resistance against Xoo in rice.


Asunto(s)
Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Xanthomonas/patogenicidad , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
11.
Plant Cell Environ ; 37(2): 451-61, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23889289

RESUMEN

Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice.


Asunto(s)
Ciclopentanos/farmacología , Resistencia a la Enfermedad , Monoterpenos/metabolismo , Oryza/metabolismo , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Monoterpenos Acíclicos , Ciclopentanos/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Oryza/microbiología , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma , Xanthomonas
12.
Plant Mol Biol ; 81(1-2): 1-11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23086497

RESUMEN

Metallothionein is a small cysteine-rich protein known to have a metal-binding function. We isolated three different lengths of rough lemon cDNAs encoding a metallothionein (RlemMT1, RlemMT2 and RlemMT3), and only RlemMT1-recombinant protein had zinc-binding activity. Appropriate concentration of zinc is an essential micronutrient for living organisms, while excess zinc is toxic. Zinc also stimulates the production of host-selective ACR-toxin for citrus leaf spot pathogen of Alternaria alternata rough lemon pathotype. Trapping of zinc by RlemMT1-recombinant protein or by a zinc-scavenging agent in the culture medium caused suppression of ACR-toxin production by the fungus. Since ACR-toxin is the disease determinant for A. alternata rough lemon pathotype, addition of RlemMT1 to the inoculum suspension led to a significant decrease in symptoms on rough lemon leaves as a result of reduced ACR-toxin production from the zinc trap around infection sites. RlemMT1-overexpression mutant of A. alternata rough lemon pathotype also produced less ACR-toxin and reduced virulence on rough lemon. This suppression was caused by an interruption of zinc absorption by cells from the trapping of the mineral by RlemMT1 and an excess supplement of ZnSO(4) restored toxin production and pathogenicity. Based on these results, we propose that zinc adsorbents including metallothionein likely can act as a plant defense factor by controlling toxin biosynthesis via inhibition of zinc absorption by the pathogen.


Asunto(s)
Alternaria/patogenicidad , Proteínas Portadoras/metabolismo , Citrus/metabolismo , Citrus/microbiología , Metalotioneína/metabolismo , Micotoxinas/biosíntesis , Proteínas de Plantas/metabolismo , Alternaria/genética , Alternaria/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/genética , Citrus/genética , Clonación Molecular , ADN de Plantas/genética , Genes Fúngicos , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Metalotioneína/genética , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Virulencia , Zinc/metabolismo
13.
Planta ; 237(5): 1379-91, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23397192

RESUMEN

We previously reported that a rare sugar D-allose, which is the D-glucose epimer at C3, inhibits the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half seeds in rice (Fukumoto et al. 2011). D-Allose suppresses expressions of gibberellin-responsive genes downstream of SLR1 protein in the gibberellin-signaling through hexokinase (HXK)-dependent pathway. In this study, we discovered that D-allose induced expression of ABA-related genes including OsNCED1-3 and OsABA8ox1-3 in rice. Interestingly, D-allose also up-regulated expression of OsABF1, encoding a conserved bZIP transcription factor in ABA signaling, in rice. The D-allose-induced expression of OsABF1 was diminished by a hexokinase inhibitor, D-mannoheptulose (MNH). Consistently, D-allose also inhibited Arabidopsis growth, but failed to trigger growth retardation in the glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1. D-Allose activated AtABI5 expression in transgenic gin2 over-expressing wild-type AtHXK1 but not in gin2 over-expressing the catalytic mutant AtHXK1(S177A), indicating that the D-allose phosphorylation by HXK to D-allose 6-phosphate (A6P) is the first step for the up-regulation of AtABI5 gene expression as well as D-allose-induced growth inhibition. Moreover, overexpression of OsABF1 showed increased sensitivity to D-allose in rice. These findings indicated that the phosphorylation of D-allose at C6 by hexokinase is essential and OsABF1 is involved in the signal transduction for D-allose-induced growth inhibition.


Asunto(s)
Glucosa/metabolismo , Glucosa/farmacología , Hexoquinasa/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hexoquinasa/genética , Oryza/efectos de los fármacos , Oryza/genética , Fosforilación , Proteínas de Plantas/genética
14.
J Exp Bot ; 64(16): 4939-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24014866

RESUMEN

Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.


Asunto(s)
Glucosa/inmunología , Oryza/genética , Especies Reactivas de Oxígeno/inmunología , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Xanthomonas/fisiología
15.
Plant Cell Physiol ; 53(12): 2060-72, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23104764

RESUMEN

The plant hormone jasmonic acid (JA) has a crucial role in both host immunity and development in plants. Here, we report the importance of JA signaling in the defense system of rice. Exogenous application of JA conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Expression of OsJAZ8, a rice jasmonate ZIM-domain protein, was highly up-regulated by JA. OsJAZ8 interacted with a putative OsCOI1, which is a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner. OsJAZ8 also formed heterodimers with other OsJAZ proteins but did not form homodimer. JA treatment caused OsJAZ8 degradation and this degradation was dependent on the 26S proteasome pathway. Furthermore, the JA-dependent OsJAZ8 degradation was mediated by the Jas domain. Transgenic rice plants overexpressing OsJAZ8ΔC, which lacks the Jas domain, exhibited a JA-insensitive phenotype. A large-scale analysis using a rice DNA microarray revealed that overexpression of OsJAZ8ΔC altered the expression of JA-responsive genes, including defense-related genes, in rice. Furthermore, OsJAZ8ΔC negatively regulated the JA-induced resistance to Xoo in rice. On the basis of these data, we conclude that JA plays an important role in resistance to Xoo, and OsJAZ8 acts as a repressor of JA signaling in rice.


Asunto(s)
Ciclopentanos/farmacología , Oryza/genética , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Xanthomonas/fisiología , Dimerización , Resistencia a la Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/efectos de los fármacos , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Complejo de la Endopetidasa Proteasomal , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba/efectos de los fármacos
16.
Plant Cell Physiol ; 53(8): 1432-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22685082

RESUMEN

The soil-borne bacterial pathogen Ralstonia solanacearum invades a broad range of plants through their roots, resulting in wilting of the plant, but no effective protection against this disease has been developed. Two bacterial wilt disease-inhibiting compounds were biochemically isolated from tobacco and identified as sclareol and cis-abienol, labdane-type diterpenes. When exogenously applied to their roots, sclareol and cis-abienol inhibited wilt disease in tobacco, tomato and Arabidopsis plants without exhibiting any antibacterial activity. Microarray analysis identified many sclareol-responsive genes in Arabidopsis roots, including genes encoding or with a role in ATP-binding cassette (ABC) transporters, and biosynthesis and signaling of defense-related molecules and mitogen-activated protein kinase (MAPK) cascade components. Inhibition of wilt disease by sclareol was attenuated in Arabidopsis mutants defective in the ABC transporter AtPDR12, the MAPK MPK3, and ethylene and abscisic acid signaling pathways, and also in transgenic tobacco plants with reduced expression of NtPDR1, a tobacco homolog of AtPDR12. These results suggest that multiple host factors are involved in the inhibition of bacterial wilt disease by sclareol-related compounds.


Asunto(s)
Arabidopsis/microbiología , Diterpenos/farmacología , Naftoles/farmacología , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Abscísico/metabolismo , Antibacterianos/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diterpenos/química , Diterpenos/aislamiento & purificación , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Análisis por Micromatrices , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Naftoles/aislamiento & purificación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Transducción de Señal , Relación Estructura-Actividad , Nicotiana/efectos de los fármacos , Nicotiana/genética
17.
Phytopathology ; 102(8): 741-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22779742

RESUMEN

The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of the rootstock species rough lemon (Citrus jambhiri) and Rangpur lime (C. limonia). Genes controlling toxin production were localized to a 1.5-Mb chromosome carrying the ACR-toxin biosynthesis gene cluster (ACRT) in the genome of the rough lemon pathotype. A genomic BAC clone containing a portion of the ACRT cluster was sequenced which allowed identification of three open reading frames present only in the genomes of ACR-toxin producing isolates. We studied the functional role of one of these open reading frames, ACRTS1 encoding a putative hydroxylase, in ACR-toxin production by homologous recombination-mediated gene disruption. There are at least three copies of ACRTS1 gene in the genome and disruption of two copies of this gene significantly reduced ACR-toxin production as well as pathogenicity; however, transcription of ACRTS1 and production of ACR-toxin were not completely eliminated due to remaining functional copies of the gene. RNA-silencing was used to knock down the remaining ACRTS1 transcripts to levels undetectable by reverse transcription-polymerase chain reaction. The silenced transformants did not produce detectable ACR-toxin and were not pathogenic. These results indicate that ACRTS1 is an essential gene in ACR-toxin biosynthesis in the rough lemon pathotype of A. alternata and is required for full virulence of this fungus.


Asunto(s)
Alternaria/enzimología , Alternaria/patogenicidad , Citrus/microbiología , Proteínas Fúngicas/metabolismo , Micotoxinas/biosíntesis , Enfermedades de las Plantas/microbiología , Alternaria/genética , Alternaria/metabolismo , Proteínas Fúngicas/genética , Micotoxinas/genética , Virulencia
18.
Plants (Basel) ; 11(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35736751

RESUMEN

Rice bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most severe diseases of rice. However, the regulatory mechanisms of rice defense against Xoo remain poorly understood. The rice MEDIATOR25, OsMED25-a subunit of the mediator multiprotein complex that acts as a universal adaptor between transcription factors (TFs) and RNA polymerase II-plays an important role in jasmonic acid (JA)-mediated lateral root development in rice. In this study, we found that OsMED25 also plays an important role in JA- and auxin-mediated resistance responses against rice bacterial blight. The osmed25 loss-of-function mutant exhibited high resistance to Xoo. The expression of JA-responsive defense-related genes regulated by OsMYC2, which is a positive TF in JA signaling, was downregulated in osmed25 mutants. Conversely, expression of some OsMYC2-independent JA-responsive defense-related genes was upregulated in osmed25 mutants. Furthermore, OsMED25 interacted with some AUXIN RESPONSE FACTORS (OsARFs) that regulate auxin signaling, whereas the mutated osmed25 protein did not interact with the OsARFs. The expression of auxin-responsive genes was downregulated in osmed25 mutants, and auxin-induced susceptibility to Xoo was not observed in osmed25 mutants. These results indicate that OsMED25 plays an important role in the stable regulation of JA- and auxin-mediated signaling in rice defense response.

19.
Plants (Basel) ; 12(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616271

RESUMEN

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.

20.
Plant J ; 61(1): 46-57, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19891707

RESUMEN

A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.


Asunto(s)
Aldehído-Liasas/fisiología , Sistema Enzimático del Citocromo P-450/fisiología , Hemípteros/fisiología , Oryza/inmunología , Oryza/microbiología , Xanthomonas/patogenicidad , Aldehído-Liasas/genética , Aldehídos/metabolismo , Aldehídos/farmacología , Animales , Sistema Enzimático del Citocromo P-450/genética , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA