Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Technol ; : 1-11, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286140

RESUMEN

The combination of sewage anaerobic treatment and partial nitritation/anammox process (PN/A) can make wastewater treatment plants energetically self-sufficient. However, PN/A application has been a challenge in low-nitrogen wastewaters and it is little explored in anaerobically pretreated domestic sewage, as well as aeration strategies and the PN/A feasibility at ambient temperature. This study investigated PN/A in a sequential batch reactor (SBR) treating real anaerobically pretreated domestic sewage. After the startup, SBR was fed with real wastewater and operated at 35°C and at ambient temperature (20-31°C) without total nitrogen (TN) removal decrease (71 ± 8 and 75 ± 6%, respectively). The median ammonium and TN removals were 68 ± 21 and 59 ± 9%, respectively with 7 min on/14 min off strategy, which represents 12.3 ± 4.2 mg L-1 N-NH4+ effluent, which is lower than Brazilian discharge limits. The qPCR results showed anammox abundance in the range of 108-109 n° copies gVSS-1. Thus, results were very promising and showed the feasibility of the PN/A process for treating real anaerobically pretreated domestic sewage at ambient temperature.

2.
Environ Technol ; 43(22): 3473-3485, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33944693

RESUMEN

The partial nitritation/anammox process (PN/A) could be a promising alternative for nitrogen removal from high-strength wastewater. There is, however, a lack of information about suitable aeration and temperature for PN/A in single-stage reactors for high-strength wastewater, such as food waste (FW) digestate treatment. To this end, a laboratory-scale (10 L) partial nitritation/anammox sequencing batch reactor was operated for more than 230 days under four different intermittent aeration strategies and temperature variations (35°C and ambient temperature - 26-29°C) to investigate the feasibility of nitrogen removal from real FW digestate. High ammonium (NH4+-N) and total nitrogen (TN) removal median efficiencies of 81 and 63%, respectively (corresponding to median NH4+-N and TN loads removed of 76 and 67 g.m-3.d-1), were achieved when the aeration strategy comprised by 7 min/14 min off and an airflow rate of 0.050 L.min-1.Lreactor-1 was applied. Nitrogen removal efficiencies were not affected by temperature variations in southeastern Brazil. COD, chloride and organic nitrogen (520, 239 and 102.8 mg.L-1, respectively) did not prevent PN/A. Changes of the bacterial community in response to aeration strategies were observed. Candidatus Brocadia dominated most of the time being more resistant to aeration and temperature changes than Candidatus Jettenia. This study demonstrated that optimizations of anoxic periods and airflow rate support PN/A with high nitrogen removal from FW digestate.


Asunto(s)
Compuestos de Amonio , Eliminación de Residuos , Oxidación Anaeróbica del Amoníaco , Bacterias , Reactores Biológicos/microbiología , Desnitrificación , Alimentos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Temperatura , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA