Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762509

RESUMEN

Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (-/-) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol's regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (-/-) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (-/-) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism.

2.
Exp Eye Res ; 203: 108394, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310058

RESUMEN

Micro-CT visualization allows reconstruction of eye structures with the resolution of light microscopy and estimation of tissue densities. Moreover, this method excludes damaging procedures and allows further histological staining due to the similar steps in the beginning. We have shown the feasibility of the lab-based micro-CT machine usage for visualization of clinically important compartments of human eye such as trabecular outflow pathway, retina, iris and ciliary body after pre-treatment with iodine in ethanol. We also identified the challenges of applying this contrasting technique to lens, cornea, and retina and proposed alternative staining methods for these tissues. Thereby this work provides a starting point for other studies for imaging of human eyes in normal and pathological conditions using lab-based micro-CT systems.


Asunto(s)
Enucleación del Ojo , Ojo/anatomía & histología , Ojo/diagnóstico por imagen , Microtomografía por Rayos X , Cámara Anterior/anatomía & histología , Cámara Anterior/diagnóstico por imagen , Segmento Anterior del Ojo/anatomía & histología , Segmento Anterior del Ojo/diagnóstico por imagen , Estudios de Factibilidad , Humanos , Imagenología Tridimensional , Cristalino/anatomía & histología , Cristalino/diagnóstico por imagen , Retina/anatomía & histología , Retina/diagnóstico por imagen
3.
Phys Chem Chem Phys ; 22(26): 14953-14964, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32588006

RESUMEN

Electrochemical aspects of Bi electrocrystallization from a bath containing bismuth nitrate in a mixture of ethylene glycol and water are addressed. Bismuth nanowires with diameters of 50-120 nm and a length of up to a few dozen microns were prepared by electrodeposition into the pores of anodic aluminium oxide templates. Crystal structure and morphology of electrodeposited materials were characterized using electron microscopy, selected area electron diffraction, and X-ray diffraction analysis. Factors affecting the formation of single or polycrystalline nanowires and their crystallographic orientation are discussed. The prospects of electrodeposited Bi nanostructures for microelectronics are illustrated by the quantitative resistivity measurements of highly texturized Bi nanowires with a diameter of ca. 100 nm and a length varying from 160 to 990 nm in a temperature range from 300 to 1.2 K.

4.
Materials (Basel) ; 15(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35057287

RESUMEN

Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated "spindle-like" clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet-visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+-Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA