Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(4): 1583-1595, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854168

RESUMEN

Our limited understanding of the impacts of drought on tropical forests significantly impedes our ability in accurately predicting the impacts of climate change on this biome. Here, we investigated the impact of drought on the dynamics of forest canopies with different heights using time-series records of remotely sensed Ku-band vegetation optical depth (Ku-VOD), a proxy of top-canopy foliar mass and water content, and separated the signal of Ku-VOD changes into drought-induced reductions and subsequent non-drought gains. Both drought-induced reductions and non-drought increases in Ku-VOD varied significantly with canopy height. Taller tropical forests experienced greater relative Ku-VOD reductions during drought and larger non-drought increases than shorter forests, but the net effect of drought was more negative in the taller forests. Meta-analysis of in situ hydraulic traits supports the hypothesis that taller tropical forests are more vulnerable to drought stress due to smaller xylem-transport safety margins. Additionally, Ku-VOD of taller forests showed larger reductions due to increased atmospheric dryness, as assessed by vapor pressure deficit, and showed larger gains in response to enhanced water supply than shorter forests. Including the height-dependent variation of hydraulic transport in ecosystem models will improve the simulated response of tropical forests to drought.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Bosques , Árboles , Clima Tropical
2.
Innovation (Camb) ; 2(4): 100154, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34901903

RESUMEN

Relationships among productivity, leaf phenology, and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests, which contribute 25% of terrestrial productivity. On the one hand, as moisture availability declines, trees shed leaves to reduce transpiration and the risk of hydraulic failure. On the other hand, increases in light availability promote the replacement of senescent leaves to increase productivity. Here, we provide a comprehensive framework that relates the seasonality of climate, leaf abscission, and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome. The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests. Where rainfall and light covary positively, litterfall and productivity also covary positively and are always greater in the wetter sunnier season. Where rainfall and light covary negatively, litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate; otherwise productivity is smaller in the drier sunnier season. This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA