Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2405159, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101613

RESUMEN

Lithium-sulfur (Li-S) batteries present significant potential for next-generation high-energy-density devices. Nevertheless, obstacles such as the polysulfide shuttle and Li-dendrite growth severely impede their commercial production. It is still hard to eliminate gaps between individual particles on separators that serve as potential conduits for polysulfide shuttling. Herein, the synthesis of a nanoscale thickness and defect-free cross-linked polyamide (PA) layer on a polypropylene (PP) separator is presented through in situ polymerization. The PA modification layer can effectively impede the diffusion of polysulfides with a thickness of only 1.5 nm, as evidenced by the results of cyclic voltammetry (CV) and time-of-flight (TOF) testing. Therefore, the Li/Li symmetric battery assembled with the functional separator exhibits an overpotential of merely 12 mV after 1000 h of cycling under test conditions of 1 mA cm-2-1 mAh cm-2. Furthermore, the capacity degradation rate of the Li-S battery is only 0.06% per cycle over 450 cycles at 1 C, while the Li-S pouch cell retains 87.63% of its capacity after 50 cycles. This work will significantly advance the preparation and application of molecules in Li-S batteries, and it will also stimulate further research on defect-free modification of separators.

2.
ACS Nano ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051978

RESUMEN

Lean-lithium metal batteries represent an advanced version of the anode-free lithium metal batteries, which can ensure high energy density and cycling stability while addressing the safety concerns and the loss of energy density caused by excessive lithium metal. Herein, a mechanically robust carbon nanotube framework current collector with gradient lithiophilicity is constructed for a lean-lithium metal battery. Using the physical vapor deposition method, precise prelithiation of a carbon nanotube framework is achieved, eliminating its irreversible capacity, retaining the porous structure in the framework, and inducing the gradient lithiophilicity formation due to spontaneous lithium ion diffusion. The lithiophilic gradient and three-dimensional porous structure are characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), scanning transmission electron microscopy (STEM), and corresponding electron energy loss spectroscopy (EELS), which enables the preferential deposition of lithium ions at the bottom of the carbon nanotube framework, thereby avoiding lithium losses associated with dead lithium. As a result, in the LiFePO4 full cell with an ultralow N/P ratio of 0.15, the initial Coulombic efficiency increases from 77.75 to 95.07%. Collaborating synergistically with the ultrathin (1.5 µm) lithium metal, serving as a gradual lithium supplement, the full cell with an N/P ratio of 1.43 demonstrates an 86% capacity retention after 500 cycles at 1C, far surpassing the copper-based counterparts (0.9%).

3.
Adv Mater ; : e2407070, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091051

RESUMEN

Single-atom catalysts (SACs) have been increasingly explored in lithium-sulfur (Li-S) batteries to address the issues of severe polysulfide shuttle effects and sluggish redox kinetics. However, the structure-activity relationship between single-atom coordination structures and the performance of Li-S batteries remain unclear. In this study, a P, S co-coordination asymmetric configuration of single atoms is designed to enhance the catalytic activity of Co central atoms and promote d-p orbital hybridization between Co and S atoms, thereby limiting polysulfides and accelerating the bidirectional redox process of sulfur. The well-designed SACs enable Li-S batteries to demonstrate an ultralow capacity fading rate of 0.027% per cycle after 2000 cycles at a high rate of 5 C. Furthermore, they display excellent rate performance with a capacity of 619 mAh g-1 at an ultrahigh rate of 10 C due to the efficient catalysis of CoSA-N3PS. Importantly, the assembled pouch cell still retains a high discharge capacity of 660 mAh g-1 after 100 cycles at 0.2 C and provides a high areal capacity of 4.4 mAh cm-2 even with a high sulfur loading of 6 mg cm-2. This work demonstrates that regulating the coordination environment of SACs is of great significance for achieving state-of-the-art Li-S batteries.

4.
ACS Appl Mater Interfaces ; 13(50): 60046-60053, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881884

RESUMEN

Rechargeable lithium-sulfur (Li-S) batteries have aroused great attention due to their high energy density and low cost. However, Li-S batteries suffer from rapid capacity decay owing to the shuttle effect of the intermediate polysulfides. To tackle this issue, functional separators with the ability to absorb polysulfides play a vital role to block them from passing through the separator. Herein, an ultrathin and lightweight layer of graphene oxide (GO) loaded with Co phthalocyanine (CoPc) is fabricated on a polypropylene (PP) separator. The thickness of CoPc@GO is about 200 nm with a low areal mass of 22 µg cm-2. CoPc is uniformly dispersed on GO sheets through π-π interactions, which inhibits the shuttle effect and facilitates the conversion of the intermediate polysulfides. In consequence, the battery with a CoPc@GO-PP separator exhibits good cycling stability with a low-capacity decay rate of 0.076% per cycle at 1 C over 400 cycles and a high specific capacity of 919 mA h g-1 after 250 cycles at 0.5 C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA