Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 80(2): 251-260, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35416804

RESUMEN

ABSTRACT: Sodium ferulate (SF) is the sodium salt of ferulic acid, which is one of the effective components of Angelica sinensis and Lignsticum chuanxiong , and plays an important role in protecting the cardiovascular system. In this study, myocardial hypertrophy was induced by angiotensin II 0.1 µmol/L in neonatal Sprague-Dawley rat ventricular myocytes. Nine groups were designed, that is, normal, normal administration, model, L-arginine (L-arg 1000 µmol/L), SF (50, 100, 200 µmol/L) group, and N G -nitro-L-arg-methyl ester 1500 µmol/L combined with SF 200 µmol/L or L-arg 1000 µmol/L group, respectively. Cardiomyocyte hypertrophy was confirmed by observing histological changes and measurements of cell diameter, protein content and atrial natriuretic factor, and ß-myosin heavy chain levels of the cells. Notably, SF could inhibit significantly myocardial hypertrophy of neonatal rat cardiomyocytes in a concentration-dependent manner without producing cytotoxicity, and the levels of nitric oxide, NO synthase (NOS), endothelial NOS, and cyclic guanosine monophosphate were increased, but the level of cyclic adenosine monophosphate was decreased in cardiomyocytes. Simultaneously, levels of protein kinase C beta, Raf-1, and extracellular regulated protein kinase 1/2 (ERK1/2) were downregulated, whereas levels of mitogen-activated protein kinase phosphatase-1 were significantly upregulated. All the beneficial effects of SF were blunted by N G -nitro-L-arg-methyl ester. Overall, these findings reveal that SF can inhibit angiotensin II-induced myocardial hypertrophy of neonatal rat cardiomyocytes, which is closely related to activation of endothelial NOS/NO/cyclic guanosine monophosphate, and inhibition of protein kinase C and mitogen-activated protein kinase signaling pathways.


Asunto(s)
Angiotensina II , Óxido Nítrico Sintasa de Tipo III , Angiotensina II/metabolismo , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Ácidos Cumáricos , GMP Cíclico/metabolismo , Ésteres , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacología , Miocitos Cardíacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
2.
Acta Pharmacol Sin ; 43(10): 2482-2494, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35292770

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is uncurable. Previous study shows that trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effect in experimental models of AD. In the present study we investigated the molecular mechanisms underlying the beneficial effect of TLB on experimental models of AD in vivo and in vitro. APP/PS1 transgenic mice were administered TLB (4, 8 mg· kg-1 ·d-1, i.g.) for 3 months; rats were subjected to ICV injection of Aß25-35, followed by administration of TLB (2.5, 5, 10 mg· kg-1 ·d-1, i.g.) for 14 days. We showed that TLB administration significantly and dose-dependently ameliorated the cognitive deficits in the two AD animal models, assessed in open field test, novel object recognition test, Y-maze test and Morris water maze test. Furthermore, TLB administration dose-dependently inhibited microglia and astrocyte activation in the hippocampus of APP/PS1 transgenic mice accompanied by decreased expression of high-mobility group box 1 (HMGB1), TLR4 and NF-κB. In Aß25-25-treated BV2 cells, TLB (12.5-50 µM) concentration-dependently increased the cell viability through inhibiting HMGB1/TLR4/NF-κB signaling pathway. HMGB1 overexpression abrogated the beneficial effects of TLB on BV2 cells after Aß25-35 insults. Molecular docking and surface plasmon resonance assay revealed that TLB directly bound to HMGB1 with a KD value of 8.541×10-4 M. Furthermore, we demonstrated that TLB inhibited Aß25-35-induced acetylation of HMGB1 through activating SIRT3/SOD2 signaling pathway, thereby restoring redox homeostasis and suppressing neuroinflammation. These results, for the first time, unravel a new property of TLB: rescuing cognitive impairment of AD via targeting HMGB1 and activating SIRT3/SOD2 signaling pathway.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteína HMGB1 , Fármacos Neuroprotectores , Sirtuina 3 , Superóxido Dismutasa , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Animales , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Flavonoides , Aditivos Alimentarios/farmacología , Aditivos Alimentarios/uso terapéutico , Proteína HMGB1/metabolismo , Ratones , Ratones Transgénicos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Polifenoles , Ratas , Transducción de Señal , Sirtuina 3/efectos de los fármacos , Sirtuina 3/metabolismo , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Receptor Toll-Like 4/metabolismo
3.
Acta Pharmacol Sin ; 43(1): 177-193, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34294886

RESUMEN

Inhibition of autophagy has been accepted as a promising therapeutic strategy in cancer, but its clinical application is hindered by lack of effective and specific autophagy inhibitors. We previously identified cepharanthine (CEP) as a novel autophagy inhibitor, which inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. In this study we investigated whether and how inhibition of autophagy/mitophagy by cepharanthine affected the efficacy of chemotherapeutic agent epirubicin in triple negative breast cancer (TNBC) cells in vitro and in vivo. In human breast cancer MDA-MB-231 and BT549 cells, application of CEP (2 µM) greatly enhanced cepharanthine-induced inhibition on cell viability and colony formation. CEP interacted with epirubicin synergistically to induce apoptosis in TNBC cells via the mitochondrial pathway. We demonstrated that co-administration of CEP and epirubicin induced mitochondrial fission in MDA-MB-231 cells, and the production of mitochondrial superoxide was correlated with mitochondrial fission and apoptosis induced by the combination. Moreover, we revealed that co-administration of CEP and epirubicin markedly increased the generation of mitochondrial superoxide, resulting in oxidation of the actin-remodeling protein cofilin, which promoted formation of an intramolecular disulfide bridge between Cys39 and Cys80 as well as Ser3 dephosphorylation, leading to mitochondria translocation of cofilin, thus causing mitochondrial fission and apoptosis. Finally, in mice bearing MDA-MB-231 cell xenografts, co-administration of CEP (12 mg/kg, ip, once every other day for 36 days) greatly enhanced the therapeutic efficacy of epirubicin (2 mg/kg) as compared with administration of either drug alone. Taken together, our results implicate that a combination of cepharanthine with chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of breast cancer.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Epirrubicina/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/química , Bencilisoquinolinas/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epirrubicina/química , Humanos , Estructura Molecular , Oxidación-Reducción , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
4.
Pharmacol Res ; 153: 104637, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31935454

RESUMEN

The Aidi injection contains multiple active ingredients, including astragaloside (Re, Rb1, and Rg1), ginsenoside, cantharidin, elentheroside E, and syringin, and it is administered with vinorelbine and cisplatin (NP) to treat non-small-cell lung carcinoma (NSCLC). In this study, we performed a systematic review and meta-analysis to determine the clinical efficacy and safety of the Aidi injection with NP, and the optimal threshold and treatment regimen to produce the desired responses. We collected all studies regarding the Aidi injection with NP for NSCLC from Chinese and English databases (up to April 2019). Risk of methodological bias was evaluated for each study. Data for analysis were extracted using a standard data extraction form. Evidence quality was assessed following the Grading of Recommendations Assessment, Development and Evaluation approach. We included 54 trials containing 4,053 patients for analysis. Combining the Aidi injection with NP significantly increased the objective response rate (odds ratio [OR], 1.32; confidence interval [CI], 1.23, 1.42), disease control rate (OR, 1.14; CI, 1.11, 1.18), and quality of life (OR, 1.80; CI, 1.61, 1.98), with decreased risks of myelosuppression, neutropenia, thrombocytopenia, anemia, gastrointestinal reaction, and liver dysfunction. For patients with a Karnofsky Performance Status score of ≥60, the Aidi injection (50 mL/day, two weeks/cycle, with two to three cycles) treatment with vinorelbine (25 mg/m2) and cisplatin (30-35 mg/m2 or 40-50 mg/m2) might be the optimal regimen for producing the desired tumor response and achieving a good safety level. Most results were robust, and their quality was moderate. The results suggest that administration of the Aidi injection and concomitant NP is beneficial to NSCLC, and provide evidence for the optimal threshold and treatment regimen that may improve tumor response with a good safety level.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Vinorelbina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Humanos , Inyecciones , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Vinorelbina/administración & dosificación , Vinorelbina/efectos adversos
5.
Acta Pharmacol Sin ; 41(12): 1547-1556, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32488170

RESUMEN

Cerebral ischemia/reperfusion (I/R) results in harmful consequences during ischemic stroke, especially the disruption of the blood-brain barrier (BBB), which leads to severe hemorrhagic transformation through aggravation of edema and brain hemorrhage. Our previous study demonstrated that icariside II (ICS II), which is derived from Herba Epimedii, attenuates cerebral I/R injury by inhibiting the GSK-3ß-mediated activation of autophagy both in vitro and in vivo. However, the effect of ICS II on the BBB remains unclear. Thus, in this study, we investigated the regulation of BBB integrity by ICS II after cerebral I/R injury and further explored the underlying mechanism in rats. Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO), and the treatment groups were administered ICS II at a dose of 16 mg/kg by gavage twice a day for 3 days. The results showed that ICS II effectively prevented BBB disruption, as evidenced by Evans Blue staining. Moreover, ICS II not only significantly reduced the expression of MMP2/9 but also increased TIMP1 and tight junction protein (occludin, claudin 5, and ZO 1) expression. Intriguingly, ICS II may directly bind to both MMP2 and MMP9, as evidenced by molecular docking. In addition, ICS II also inhibited cerebral I/R-induced apoptosis and ameliorated the Bax/Bcl-2 ratio and cleaved-caspase 3 level. Collectively, our findings reveal that ICS II significantly ameliorates I/R-induced BBB disruption and neuronal apoptosis in MCAO rats by regulating the MMP9/TIMP1 balance and inhibiting the caspase 3-dependent apoptosis pathway.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Isquemia Encefálica/metabolismo , Flavonoides/uso terapéutico , Metaloproteinasa 9 de la Matriz/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Claudina-5/metabolismo , Flavonoides/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Ocludina/metabolismo , Unión Proteica , Ratas Sprague-Dawley , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Proteína de la Zonula Occludens-1/metabolismo
6.
Acta Pharmacol Sin ; 41(2): 154-162, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31554962

RESUMEN

ß-amyloid (Aß) is one of the inducing factors of astrocytes activation and neuroinflammation, and it is also a crucial factor for the development of Alzheimer's disease (AD). Icariside II (ICS II) is an active component isolated from a traditional Chinese herb Epimedium, which has shown to attnuate lipopolysaccharide (LPS)-induced neuroinflammation through regulation of NF-κB signaling pathway. In this study we investigated the effects of ICS II on LPS-induced astrocytes activation and Aß accumulation. Primary rat astrocytes were pretreated with ICS II (5, 10, and 20 µM) or dexamethasone (DXMS, 1 µM) for 1 h, thereafter, treated with LPS for another 24 h. We found that ICS II pretreatment dose dependently mitigated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in the astrocytes. Moreover, ICS II not only exerted the inhibitory effect on LPS-induced IκB-α degradation and NF-κB activation, but also decreased the levels of Aß1-40, Aß1-42, amyloid precursor protein (APP) and beta secretase 1 (BACE1) in the astrocytes. Interestingly, molecular docking revealed that ICS II might directly bind to BACE1. It is concluded that ICS II has potential value as a new therapeutic agent to treat neuroinflammation-related diseases, such as AD.


Asunto(s)
Astrocitos/efectos de los fármacos , Flavonoides/farmacología , Inflamación/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Astrocitos/metabolismo , Relación Dosis-Respuesta a Droga , Flavonoides/administración & dosificación , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Inflamación/patología , Lipopolisacáridos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
7.
Biochim Biophys Acta ; 1830(4): 2861-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23328493

RESUMEN

BACKGROUND: Heme oxygenase-1 (HO-1) has potential anti-apoptotic properties. A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2- ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)] was synthesized by joining danshensu and cysteine through an appropriate linker. This study investigated if the cytoprotective properties of DSC involved the induction of HO-1. METHODS: We evaluated the cytoprotective effects of DSC on H2O2-induced cell damage, apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm) loss, and apoptosis-related proteins expression and its underlying mechanisms. RESULTS: DSC concentration-dependently attenuated cell death, lactate dehydrogenase release, intracellular and mitochondrial ROS production, and ΔΨm collapse, modulated apoptosis-related proteins (Bcl-2, Bax, caspase-3, p53, and cleaved PARP) expression, and inhibited phosphorylation of extracellular signal-regulated kinase 1/2 in SH-SY5Y cells induced by H2O2. In addition, DSC concentration-dependently induced HO-1 expression associated with nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2), while the effect of DSC was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, the protective effect of DSC on H2O2-induced cell death was abolished by HO-1 inhibitor ZnPP, but was mimicked by carbon monoxide-releasing moiety CORM-3 or HO-1 by-product bilirubin. Finally, DSC inhibited H2O2-induced changes of Bcl-2, Bax, and caspase-3 expression, and all of these effects were reversed by HO-1 silencing. CONCLUSIONS: Induction of HO-1 may be, at least in part, responsible for the anti-apoptotic property of DSC, an effect that involved the activation of PI3K/Akt/Nrf-2 axis. GENERAL SIGNIFICANCE: DSC might have the potential for beneficial therapeutic interventions for neurodegenerative diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Hemo-Oxigenasa 1/biosíntesis , Lactatos/farmacología , Fenilacetatos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Int J Neuropsychopharmacol ; 17(6): 871-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24513083

RESUMEN

Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aß1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , GMP Cíclico/metabolismo , Flavonoides/farmacología , Óxido Nítrico/metabolismo , Nootrópicos/farmacología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Óxido Nítrico Sintasa/metabolismo , Fragmentos de Péptidos/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Presenilina-1/genética , Presenilina-1/metabolismo , Distribución Aleatoria
9.
Phytomedicine ; 130: 155744, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38763011

RESUMEN

BACKGROUND: Aging is associated with learning and memory disorder, affecting multiple brain areas, especially the hippocampus. Previous studies have demonstrated trilobatin (TLB), as a natural food additive, can extend the life of Caenorhabditis elegans and exhibit neuroprotection in Alzheimer's disease mice. However, the possible significance of TLB in anti-aging remains elusive. PURPOSE: This study aimed to delve into the physiological mechanism by which TLB ameliorated aging-induced cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS: 6-month-old SAMP8 mice were administrated with TLB (5, 10, 20 mg/kg/day, i.g.) for 3 months. The therapeutic effect of TLB on aging-induced cognitive impairment was assessed in mice using behavioral tests and aging score. The gut microbiota composition in fecal samples was analyzed by metagenomic analysis. The protective effects of TLB on blood-brain barrier (BBB) and intestinal barrier were detected by transmission electron microscope, H&E staining and western blot (WB) assay. The inhibitive effects of TLB on inflammation in brain and intestine were assessed using immunofluorescence, WB and ELISA assay. Molecular docking and surface plasma resonance (SPR) assay were utilized to investigate interaction between TLB and sirtuin 2 (SIRT2). RESULTS: Herein, the findings exhibited TLB mitigated aging-induced cognitive impairment, neuron injury and neuroinflammation in hippocampus of aged SAMP8 mice. Moreover, TLB treatment repaired imbalance of gut microbiota in aged SAMP8 mice. Furthermore, TLB alleviated the damage to BBB and intestinal barrier, concomitant with reducing the expression of SIRT2, phosphorylated levels of c-Jun NH2 terminal kinases (JNK) and c-Jun, and expression of MMP9 protein in aged SAMP8 mice. Molecular docking and SPR unveiled TLB combined with SIRT2 and down-regulated SIRT2 protein expression. Mechanistically, the potential mechanism of SIRT2 in TLB that exerted anti-aging effect was validated in vitro. As expected, SIRT2 deficiency attenuated phosphorylated level of JNK in HT22 cells treated with d-galactose. CONCLUSION: These findings reveal, for the first time, SIRT2-mediated brain-gut barriers contribute to aging and aging-related diseases, and TLB can rescue aging-induced cognitive impairment by targeting SIRT2 and restoring gut microbiota disturbance to mediate the brain-gut axis. Overall, this work extends the potential application of TLB as a natural food additive in aging-related diseases.


Asunto(s)
Envejecimiento , Eje Cerebro-Intestino , Disfunción Cognitiva , Microbioma Gastrointestinal , Sirtuina 2 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Ratones , Envejecimiento/efectos de los fármacos , Sirtuina 2/metabolismo , Masculino , Eje Cerebro-Intestino/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Simulación del Acoplamiento Molecular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Modelos Animales de Enfermedad
10.
Phytomedicine ; 120: 155059, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672856

RESUMEN

BACKGROUND: Fulminant hepatic failure (FHF) lacks efficient therapies notwithstanding increased comprehending of the inflammatory response and oxidative stress play crucial roles in the pathogenesis of this type of hepatic damage. Trilobatin (TLB), a naturally occurring food additive, is endowed with anti-inflammation and antioxidant properties. PURPOSE: In current study, we evaluated the effect of TLB on FHF with a mouse model with d-galactosamine/lipopolysaccharide (GalN/LPS)-induced FHF and LPS-stimulated Kupffer cells (KCs) injury. METHODS: Mice were randomly divided into seven groups: control group, TLB 40 mg/kg + control group, GalN/LPS group, TLB 10 mg/kg + GalN/LPS group, TLB 20 mg/kg + GalN/LPS group, TLB 40 mg/kg + GalN/LPS group, bifendate 150 mg/kg + GalN/LPS group. The mice were administered intragastrically TLB (10, 20 and 40 mg/kg) for 7 days (twice a day) prior to injection of GalN (700 mg/kg)/LPS (100 µg/kg). The KCs were pretreated with TLB (2.5, 5, 10 µM) for 2 h or its analogue (10 µM) or COX2 inhibitor (10 µM), and thereafter challenged by LPS (1 µg/ml) for 24 h. RESULTS: TLB effectively rescued GalN/LPS-induced FHF. Furthermore, TLB inhibited TLR 4/NLRP3/pyroptosis pathway, and caspase 3-dependent apoptosis pathway, along with reducing excessive cellular and mitochondrial ROS generation and enhancing mitochondrial biogenesis. Intriguingly, TLB directly bound to COX2 as reflected by transcriptomics, molecular docking technique and surface plasmon resonance assay. Furthermore, TLB failed to attenuate LPS-induced inflammation and oxidative stress in KCs in the absence of COX2. CONCLUSION: Our findings discover a novel pharmacological effect of TLB: protecting against FHF-induced pyroptosis and apoptosis through mediating ROS/TLR4/NLRP3 signaling pathway and reducing inflammation and oxidative stress. TLB may be a promising agent with outstanding safety profile to treat FHF.


Asunto(s)
Fallo Hepático Agudo , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Ciclooxigenasa 2 , Especies Reactivas de Oxígeno , Receptor Toll-Like 4 , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/tratamiento farmacológico , Transducción de Señal
11.
Phytomedicine ; 115: 154847, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149965

RESUMEN

INTRODUCTION: Aidi injection (Aidi), a traditional Chinese medicine injection, is often practiced to control malignant pleural effusion (MPE). OBJECTIVES: We performed a registered systematic review and meta-analysis (PROSPERO: CRD42022337611) to clarify the clinical role of Aidi in MPE, reveal optimal combinations of Aidi and chemical agents, their indications, therapeutic route and usage, and demonstrate their clinical effectiveness and safety. METHODOLOGY: All randomized controlled trials (RCTs) about Aidi in controlling MPE were collected from Chinese and English databases (up to October 2022). We clustered them into multiple homogenous regimens, evaluated the risk-of-bias at outcome level using a RoB 2, extracted and pooled the data using meta-analysis or descriptive analysis, and finally summarized their evidence quality. RESULTS: All 56 studies were clustered into intrapleural administration with Aidi alone or plus chemical agents, and intravenous administration with Aidi for MPE. Intrapleural administration with Aidi alone displayed similar clinical responses on Cisplatin (DDP) alone. Only administration with Aidi plus DDP significantly improved complete response and quality of life, and displayed a low pleurodesis failure, disease progression, hematotoxicity, gastrointestinal and hepatorenal toxicity. For patients with moderate to massive effusion, Karnofsky Performance Status score ≥ 50 or anticipated survival time ≥3 months, Aidi (50 ml to 80 ml each time, one time each week and three to eight times) plus DDP (20 to 30 mg, 40 to 50 mg, or 60 to 80 mg each time) significantly improved clinical responses. Most results had moderate to low quality. CONCLUSIONS: Current evidences indicate that Aidi, a pleurodesis agent, plays an interesting clinical role in controlling MPE. Aidi plus DDP perfusion is a most commonly used regimen, which shows a significant improvement in clinical responses. These findings also provide an indication and possible optimal usage for rational drug use.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Derrame Pleural Maligno , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Derrame Pleural Maligno/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Cisplatino/uso terapéutico
12.
Artículo en Inglés | MEDLINE | ID: mdl-22474498

RESUMEN

Ginsenoside Rg1 (Rg1) has been reported to suppress the proliferation of vascular smooth muscle cells (VSMCs). This study aimed to observe the role of nitric oxide (NO) in Rg1-antiproliferative effect. VSMCs from the thoracic aorta of SD rats were cultured by tissue explant method, and the effect of Rg1 (20 mg·L(-1), 60 mg·L(-1), and 180 mg·L(-1)) on platelet-derived growth factor-BB (PDGF-BB)-induced proliferation was evaluated by MTT assay. The cell cycle was analyzed by flow cytometry. For probing the mechanisms, the content of NO in supernatant and cGMP level in VSMCs was measured by nitric oxide kit and cGMP radio-immunity kit, respectively; the expressions of protooncogene c-fos and endothelial NO synthase (eNOS) mRNA in the VSMCs were detected by real-time RT-PCR; the intracellular free calcium concentration ([Ca2(+)](i)) was detected with Fura-2/AM-loaded VSMCs. Comparing with that in normal group, Rg1 180 mg·L(-1) did not change the absorbance of MTT and cell percent of G(0)/G(1), G(2)/M, and S phase in normal cells (P > 0.05). Contrarily, PDGF-BB could increase the absorbance of MTT (P < 0.01) and the percent of the S phase cells but decrease the G(0)/G(1) phase cell percent in the cell cycle, accompanied with an upregulating c-fos mRNA expression (P < 0.01), which was reversed by additions of Rg1(20 mg·L(-1), 60 mg·L(-1), and 180 mg·L(-1)). Rg1 administration could also significantly increase the NO content in supernatant and the cGMP level in VSMCs, as well as the eNOS mRNA expression in the cells, in comparison of that in the group treated with PDGF-BB alone (P < 0.01). Furthermore, Rg1 caused a further increase in the elevated [Ca(2+)](i) induced by PDGF-BB. It was concluded that Rg1 could inhibit the VSMC proliferation induced by PDGF-BB through restricting the G(0)/G(1) phase to S-phase progression in cell cycle. The mechanisms may be related to the upregulation of eNOS mRNA and the increase of the formation of NO and cGMP.

13.
Front Pharmacol ; 13: 828473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153796

RESUMEN

Oxidative stress and aberrant insulin signaling transduction play vital roles in type 2 diabetes mellitus (T2DM). Our previous research has demonstrated that trilobatin (TLB), derived from the leaves of Lithocarpus Polystachyus (Wall.), exhibits a potent antioxidative profile. In the current study, we investigated the anti-T2DM effect of TLB on KK-Ay diabetic mice and further explored the potential mechanisms. Our results showed that TLB significantly reduced the high fasting blood glucose level and insulin resistance and promoted the tolerances to exogenous glucose and insulin in KK-Ay mice. Moreover, TLB reduced the content of reactive oxygen species; enhanced antioxidant enzymes activities, including serum catalase, glutathione peroxidase, and superoxide dismutase; and regulated the abnormal parameters of lipid metabolism, including triglyceride, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, and free fatty acid, as evidenced by enzyme-linked immunosorbent assay. Additionally, TLB markedly ameliorated the pancreatic islet morphology near normal and increased the insulin expression of the islet. Whereafter, TLB promoted Nrf2 that was translocated from cytoplasm to nucleus. Moreover, it increased the protein expressions of HO-1, NQO-1, and GLUT-2, and phosphorylation levels of Akt and GSK-3ß Ser 9 and decreased the protein expressions of keap1 and phosphorylation levels of IRS-1Ser 307 and GSK-3ß Tyr 216. Taken together, our findings reveal that TLB exhibits an anti-T2DM effect in KK-Ay mice by activating the Nrf2/ARE signaling pathway and regulating insulin signaling transduction pathway, and TLB is promising to be developed into a novel candidate for the treatment of T2DM in clinic due to its favorable druggability.

14.
Brain Behav Immun ; 25(1): 110-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20828607

RESUMEN

Neuroinflammation exacerbates hyperphosphorylated tau and amyloid-ß (Aß) generation by generating a plethora of inflammatory mediators and neurotoxic compounds in a transgenic model of Alzheimer's disease (AD), and it was reported that hydrogen sulfide (H2S) attenuates lipopolysaccharide (LPS)-induced neuroinflammation both in vitro and in vivo. In the present study, the protective effects of S-propargyl-cysteine (SPRC) on spatial learning and memory impairment induced by LPS were examined in vivo, and the possible mechanisms were explored. The data showed that SPRC administration by intraperitoneal (i.p.) injection may attenuate cognitive impairment induced by bilateral intracerebroventricular (b.i.c.v.) injection of 5 µg of LPS in rats. Subsequently, SPRC prevented a decrease of H2S levels in rat hippocampus subjected to LPS. Furthermore, SPRC afforded beneficial actions in inhibitions tumor necrosis factor (TNF)-α, TNF-α receptor 1 (TNFR1) and Aß generation, as well as IκB-α degradation and phospho-transcription factors of the nuclear factor κB p65 (p-NF-κB p65) activation induced by LPS. These findings suggested that SPRC, a novel H2S-modulated agent, might be a potential agent for the treatment of neuroinflammation-related diseases, such as AD.


Asunto(s)
Cisteína/análogos & derivados , Sulfuro de Hidrógeno/metabolismo , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/psicología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , FN-kappa B/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/fisiología , Precursor de Proteína beta-Amiloide/biosíntesis , Animales , Western Blotting , Cisteína/farmacología , Hipocampo/metabolismo , Proteínas I-kappa B/metabolismo , Masculino , Fosforilación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor 1 Asociado a Receptor de TNF/biosíntesis , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
15.
Amino Acids ; 41(1): 205-15, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21308383

RESUMEN

The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.


Asunto(s)
Cisteína/análogos & derivados , Sulfuro de Hidrógeno/metabolismo , Inflamación/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Animales , Línea Celular , Cisteína/química , Cisteína/farmacología , Sulfuro de Hidrógeno/antagonistas & inhibidores , Inflamación/inducido químicamente , Inflamación/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
16.
Amino Acids ; 40(2): 601-10, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20640462

RESUMEN

Beta-amyloid (Aß) is considered to be responsible for the pathogenesis of Alzheimer's disease (AD), and accumulation and aggregation of Aß peptide in the brains of AD patients result in activation of glial cells which, in turn, initiates neuroinflammatory responses that involve reactive oxygen intermediates and release of inflammatory cytokines. In the present study, the protective effects of S-propargyl-cysteine (SPRC), also named as ZYZ-802, a sulphur-containing amino acid, on cognitive impairment and neuronal ultrastructure damage induced by Aß were examined in rats, and the possible mechanisms were explored. These data showed that SPRC administration at the doses of 40, 80 mg/kg by intraperitoneal injection (i.p.) may inhibit cognitive impairment and neuronal ultrastructure damage induced by intracerebroventricular (i.c.v.) injection of 10 µg of Aß(25-35) in rats. Subsequently, SPRC inhibited the expressions of tumor necrosis factor (TNF)-α, cyclooxygenase-2 (COX-2) mRNA, and protein in rat hippocampus. SPRC afforded a beneficial action on inhibitions of extracellular signal-regulated kinase (ERK1/2), as well as inhibitions of IκB-α degradation and activation of transcription factors of the nuclear factor κB (NF-κB) produced by Aß. These findings suggested that SPRC might be a potential agent for treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/inmunología , Cognición/efectos de los fármacos , Cisteína/análogos & derivados , Cisteína/administración & dosificación , Enfermedad de Alzheimer/psicología , Animales , Cisteína/inmunología , Humanos , Masculino , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley
17.
Ibrain ; 7(3): 153-170, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37786799

RESUMEN

Background: Alzheimer's disease (AD) is the most common type of dementia, which brings tremendous burden to the sufferers and society. However, ideal tactics are unavailable for AD. Our previous study has shown that CZ2HF, a Chinese herb preparation, mitigates cognitive impairment in AD rats; whereas, its detailed mechanism has not been elucidated. Methods: Public databases were applied to collect and identify the chemical ingredients of eight herbs in CZ2HF. Criteria of absorption, distribution, metabolism, and excretion was used to screen oral bio-availability and drug-likeness. STITCH database and Therapeutic Target Database were applied to decipher the relationship between compounds and genes related to AD. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology term analyses were used to identify the involved signaling pathways. Cytoscape was adopted to establish the networks The molecular docking was used to validate the interactions between the candidate compounds and their potential targets. Results: 914 compounds were identified in eight herbal medicines of CZ2HF. Among them, 9 compounds and 28 genes were highly involved in the pathologic process of AD. Furthermore, the mechanism of CZ2HF to AD was based on its anti-inflammatory effects mainly through lipopolysaccharide-mediated signaling pathway and TNF signaling pathway. Core genes in this network were TNF, ICAM1, MMP9 and IL-10. Conclusion: This study predicts the active compounds in CZ2HF and uncovers their protein targets using holistic network pharmacology methods. It will provide a insight into the underlying mechanism of CZ2HF to AD from a multi-scale perspective.

18.
Front Pharmacol ; 12: 655045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935768

RESUMEN

Trilobatin (TLB) is an effective component from Lithocarpus polystachyrus Rehd. Our previous study revealed that TLB protected against oxidative injury in neuronal cells by AMPK/Nrf2/SIRT3 signaling pathway. However, whether TLB can delay aging remains still a mystery. Therefore, the present study was designed to investigate the possible longevity-enhancing effect of TLB, and further to explore its underlying mechanism in Caenorhabditis elegans (C. elegans). The results showed that TLB exerted beneficial effects on C. elegans, as evidenced by survival rate, body movement assay and pharynx-pumping assay. Furthermore, TLB not only significantly decreased ROS and MDA levels, but also increased anti-oxidant enzyme activities including CAT and SOD, as well as its subtypes SOD2 andSOD3, but not affect SOD1 activity, as evidenced by heat and oxidative stress resistance assays. Whereas, the anti-oxidative effects of TLB were almost abolished in SKN1, Sir2.3, and DAF16 mutant C. elegans. Moreover, TLB augmented the fluorescence intensity of DAF16: GFP, SKN1:GFP, GST4:GFP mutants, indicating that TLB increased the contents of SKN1, SIRT3 and DAF16 due to fluorescence intensity of these mutants, which were indicative of these proteins. In addition, TLB markedly increased the protein expressions of SKN1, SIRT3 and DAF16 as evidenced by ELISA assay. However, its longevity-enhancing effect were abolished in DAF16, Sir2.3, SKN1, SOD2, SOD3, and GST4 mutant C. elegans than those of non-TLB treated controls. In conclusion, TLB effectively prolongs lifespan of C. elegans, through regulating redox homeostasis, which is, at least partially, mediated by SKN1/SIRT3/DAF16 signaling pathway.

19.
Front Pharmacol ; 12: 582447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122057

RESUMEN

Introduction: Aidi injection (Aidi) is composed of cantharidin, astragaloside, ginsenoside, and elentheroside E. As an important adjuvant therapy, Aidi in combination with gemcitabine and cisplatin (GP) is often used in the treatment of non-small cell lung cancer (NSCLC). Objectives: We performed a new evaluation to demonstrate the clinical efficacy and safety of the Aidi and GP combination and further explored an optimal strategy for achieving an ideal response and safety level in advanced NSCLC. Methodology: We collected all the related trials from Chinese and English-language databases, analyzed their methodological bias risk using the Cochrane evaluation Handbook for Systematic Reviews of Interventions Version 5.1.0, extracted all the data using a predefined data extraction form, pooled the data using a series of meta-analyses, and finally summarized the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Results: We included 70 trials with 5,509 patients. Compared with GP alone, the Aidi and GP combination showed a significant improvement in the objective response rate (ORR) [1.82 (1.62-2.04)], disease control rate (DCR) [2.29 (1.97-2.67)], and quality of life (QOL) [3.03 (2.55-3.60)] and a low incidence of hematotoxicity and gastrointestinal and hepatorenal toxicity. Aidi might be more suitable for patients who are first-treated, elderly, or patients with a Karnofsky Performance Status (KPS) score ≥ 60 or anticipated survival time (AST) ≥3 months. An Aidi (50 ml/day, 7-14 days/cycle for one to two cycles), gemcitabine (1000 mg/m2), and cisplatin (20-30 mg/m2, 40-50 mg/m2, or 60-80 mg/m2) might be an optimal regimen for realizing an ideal response and safety level. Most results were robust and of moderate quality. Conclusion: Current evidence indicates that Aidi's value in adjuvant chemotherapy may be broad-spectrum, not just for some regimens. The Aidi and GP combination may show a good short-term response, antitumor immunity, and safety level in patients with NSCLC. Aidi (50 ml/day, 7-14 days/cycle for one and two cycles) with GEM (1000 mg/m2) and DDP (20-30 mg/m2 or 40-50 mg/m2) may be an optimal regimen for realizing an ideal goal in patients who are first-treatment, elderly, or have a KPS score ≥ 60 or AST≥3 months.

20.
Front Physiol ; 11: 514494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33574763

RESUMEN

Percutaneous coronary intervention (PCI) is the most widely used therapy for treating ischemic heart disease. However, intimal hyperplasia and restenosis usually occur within months after angioplasty. Modern pharmacological researchers have proven that osthole, the major active coumarin of Cnidium monnieri (L.) Cusson, exerts potent antiproliferative effects in lung cancer cells, the human laryngeal cancer cell line RK33 and TE671 medulloblastoma cells, and its mechanism of action is related to cell cycle arrest. The goal of the present study was to observe the effect of osthole on vascular smooth muscle cell (VSMC) proliferation using platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs isolated from rats and vascular balloon injury as models to further elucidate the molecular mechanisms underlying this activity. We detected the relative number of VSMCs by the MTT assay and EdU staining and examined cell cycle progression by flow cytometry. To more deeply probe the mechanisms, the protein expression levels of PCNA, the cyclin D1/CDK4 complex and the cyclin E1/CDK2 complex in balloon-treated rat carotid arteries and the mRNA and protein expression levels of the cyclin D1/CDK4 and cyclin E1/CDK2 complexes in VSMCs were detected by real-time RT-PCR and western blotting. The data showed that osthole significantly inhibited the proliferation of VSMCs induced by PDGF-BB. Furthermore, osthole caused apparent VSMC cycle arrest early in G0/G1 phase and decreased the expression of cyclin D1/CDK4 and cyclin E1/CDK2. Our results demonstrate that osthole can significantly inhibit PDGF-BB-induced VSMC proliferation and that its regulatory effects on cell cycle progression and proliferation may be related to the downregulation of cyclin D1/CDK4 and cyclin E1/CDK2 expression as well as the prevention of cell cycle progression from G0/G1 phase to S phase. The abovementioned mechanism may be responsible for the alleviation of neointimal hyperplasia in balloon-induced arterial wall injury by osthole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA