Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Plant Res ; 135(1): 55-67, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34762207

RESUMEN

Ephemeral plants are a crucial vegetation component in temperate deserts of Central Asia, and play an important role in biogeochemical cycle and biodiversity maintenance in desert ecosystems. However, the nitrogen (N) and phosphorus (P) status and interrelations of leaf-root-soil of ephemeral plants remain unclear. A total of 194 leaf-root-soil samples of eight ephemeral species at 37 sites in the Gurbantunggut Desert, China were collected, and then the corresponding N and P concentrations, and the N:P ratio were measured. Results showed that soil parameters presented no significant difference among the eight species. The total soil N:P was only 0.116 (geomean), indicating limited soil N, while the available soil N:P (4.896, geomean) was significantly larger than the total N:P. The leaf N (averagely 30.995 mg g-1) and P (averagely 1.523 mg g-1) concentrations were 2.64-8.46 and 0.93-3.99 times higher than the root N (averagely 8.014 mg g-1) and P (averagely 0.802 mg g-1) concentrations, respectively. Thus, leaf N:P (averagely 21.499) was 1.410-2.957 times higher than root N:P (averagely 11.803). Meanwhile, significant interspecific differences existed in plant stoichiometric traits. At the across-species level, N content scaled as the 3/4-power of P content in both leaves and roots. Leaf and root N:P ratios were mainly influenced by P; however, the leaf-to-root N or P ratio was dominated by roots. Leaf and root N, P contents and N:P were generally unrelated to soil nutrients, and the former presented lower variation than the latter, indicating a strong stoichiometric homeostasis for ephemerals. These results demonstrate that regardless of soil nutrient supply capacity in this region, the fast-growing ephemeral plants have formed a specific leaf-root-soil stoichiometric relation and nutrient use strategy adapting to the extreme desert environment.


Asunto(s)
Ecosistema , Suelo , China , Nitrógeno/análisis , Fósforo , Hojas de la Planta/química , Plantas
2.
Brain Behav Immun ; 79: 125-138, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30684649

RESUMEN

Opioids are among the most effective and widely prescribed medications for the treatment of pain following spinal cord injury (SCI). Spinally-injured patients receive opioids within hours of arrival at the emergency room, and prolonged opioid regimens are often employed for the management of post-SCI chronic pain. However, previous studies in our laboratory suggest that the effects of opioids such as morphine may be altered in the pathophysiological context of neurotrauma. Specifically, we have shown that morphine administration in a rodent model of SCI increases mortality and tissue loss at the injury site, and decreases recovery of motor and sensory function, and overall health, even weeks after treatment. The literature suggests that opioids may produce these adverse effects by acting as endotoxins and increasing glial activation and inflammation. To better understand the effects of morphine following SCI, in this study we used flow cytometry to assess immune-competent cells at the lesion site. We observed a morphine-induced increase in the overall number of CD11b+ cells, with marked effects on microglia, in SCI subjects. Next, to investigate whether this increase in the inflammatory profile is necessary to produce morphine's effects, we challenged morphine treatment with minocycline. We found that pre-treatment with minocycline reduced the morphine-induced increase in microglia at the lesion site. More importantly, minocycline also blocked the adverse effects of morphine on recovery of function without disrupting the analgesic efficacy of this opioid. Together, our findings suggest that following SCI, morphine may exacerbate the inflammatory response, increasing cell death at the lesion site and negatively affecting functional recovery.


Asunto(s)
Minociclina/metabolismo , Minociclina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacología , Animales , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Morfina/efectos adversos , Morfina/metabolismo , Morfina/farmacología , Dolor/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
3.
Ecol Evol ; 10(13): 6636-6645, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724538

RESUMEN

Aridity and salinity have a key role in driving physiological and ecological processes in desert ecosystems. However, how community-scale foliar nutrients respond to aridity and salinity, and how these responses might vary with community composition along aridity and salinity gradients is unclear. We hypothesize that the response will be a shift in community stoichiometric values resulting from nutrient variability of shared species and unique species (site-specific species), but little research has addressed the relative contribution of either component.We analyzed the community-scale stoichiometric response of a desert community of perennial plants along an aridity and salinity transect by focusing on foliar nitrogen (N) and phosphorous (P) concentrations and N:P ratios. After evaluating the shared and unique species variability, we determined their relative contribution to the community stoichiometric response to aridity and salinity, reflected by changes in nonweighted and weighted community-average values.Community-scale stoichiometry decreased significantly under aridity and salinity, with significantly consistent changes in nonweighted and weighted community-average stoichiometry for most shared and unique species measurements. The relative contribution of unique species shifts to the changes in community stoichiometry was greater (15%-77%) than the relative contribution of shared species shifts (7%-45%), excluding the change in weighted P concentration under aridity. Thus, the shifts of unique species amplified the community stoichiometric response to environmental changes. Synthesis. These results highlighted the need for a more in-depth consideration of shared and unique species variability to understand and predict the effects of environmental change on the stoichiometry of plant communities. Although variation in community stoichiometry can be expected under extreme aridity and salinity conditions, changes of unique species could be a more important driver of the stoichiometric response of plant communities.

4.
Ying Yong Sheng Tai Xue Bao ; 19(11): 2364-8, 2008 Nov.
Artículo en Zh | MEDLINE | ID: mdl-19238833

RESUMEN

Taking Bayanbulak alpine grassland on the southern slope of Tianshan Mountain, Xin-jiang as test object, the relationships between belowground biomass and environmental factors along an altitude gradient were analyzed. The results showed that with increasing altitude, the below-ground biomass of alpine steppe dominated by Stipa purpurea and Festuca ovina, alpine steppe meadow dominated by Kobresia capillifolia and S. purpurea, and alpine meadow dominated by Carex stenocarpa, Alchemilla tianschanica, and K. capillfolia all increased gradually. There was a significant positive correlation between altitude and belowground biomass (P<0.01). The belowground biomass decreased with soil deep and with a 'T' shape distribution. In alpine steppe, alpine steppe meadow, and alpine meadow, the belowground biomass in 0-10 cm soil layer occupied 68.1%, 84.1% and 86.7% of the total, respectively. The below-ground biomass of the alpine grassland was negatively correlated with air temperature and positively correlated with relative humidity and soil water content (P<0.01), but had no significant correlation with soil organic matter, available nitrogen, and pH value.


Asunto(s)
Altitud , Biomasa , Frío , Raíces de Plantas/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , China , Ecosistema , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA