Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2403421121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226350

RESUMEN

Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis , Rifampin , Rifampin/farmacología , Rifampin/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/ultraestructura , Transportadoras de Casetes de Unión a ATP/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Proteínas Bacterianas/genética , Modelos Moleculares , Adenilil Imidodifosfato/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252995

RESUMEN

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Galactanos , Pentosiltransferasa/genética
3.
J Environ Manage ; 210: 162-170, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29339334

RESUMEN

Eco-compensation is the most important form of compensatory conservation in China. However, this compensatory mechanism is criticized for vague definition and massive government participation. For better understanding of eco-compensation in China, this paper compares theories and practices of compensatory mechanisms in China and abroad. The analysis of theoretical backgrounds shows that eco-compensation in China is a combination of 'ecological compensation' and 'payments for ecosystem services'. Ten compensatory projects in China and abroad are assessed to reveal characteristics and problems of eco-compensation in China. The results show that compensatory projects in China lagged behind mature foreign compensatory projects in clarity of property rights, responsibility fulfillment, executive efficiency, effectiveness, sustainability and equality. The massive participation of the government is the major reason for the poor performance of compensatory projects in China. However, government participation is necessary at the present stage in China for the income gap and beneficiaries' low willingness to pay. For the improvement of eco-compensation in China, suggestions are given on the choice of non-market valuation methods, the creation of property rights and the establishment of market mechanisms.


Asunto(s)
Conservación de los Recursos Naturales/economía , Ecosistema , China , Ecología
4.
Acta Biochim Biophys Sin (Shanghai) ; 41(11): 883-91, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19902122

RESUMEN

Acetylcholinesterase (AChE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further confirmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were heterogeneously expressed in the cisplatin-untreated cytoplasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the translocation observed in case of AChE.


Asunto(s)
Acetilcolinesterasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Riñón/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Unión , Línea Celular , Humanos , Unión Proteica , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA