Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(2): e1011135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315718

RESUMEN

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.


Asunto(s)
Fosfatos , Zea mays , Fosfatos/metabolismo , Fósforo/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743860

RESUMEN

Proline metabolism plays a crucial role in both environmental stress responses and plant growth. However, the specific mechanism by which proline contributes to abiotic stress processes remains to be elucidated. In this study, we utilized atrzf1 (Arabidopsis thaliana ring zinc finger 1) as a parental line for T-DNA tagging mutagenesis and identified a suppressor mutant of atrzf1, designated proline content alterative 31 (pca31). The pca31 mutant suppressed the insensitivity of atrzf1 to dehydration stress during early seedling growth. Using Thermal Asymmetric Interlaced-PCR, we found that the T-DNA of pca31 was inserted into the promoter region of the At2g22620 gene, which encodes the cell wall enzyme rhamnogalacturonan lyase 1 (RGL1). Enzymatic assays indicated that RGL1 exhibited rhamnogalacturonan lyase activity, influencing cell wall pectin composition. The decrease in RGL1 gene expression suppressed the transcriptomic perturbation of the atrzf1 mutant. Silencing of the RGL1 gene in atrzf1 resulted in a sensitive phenotype similar to pca31 under osmotic stress conditions. Treatment with mannitol, salt, hydrogen peroxide, and abscisic acid induced RGL1 expression. Furthermore, we uncovered that RGL1 plays a role in modulating root growth and vascular tissue development. Molecular, physiological, and genetic experiments revealed that the positive modulation of RGL1 during abiotic stress was linked to the AtRZF1 pathway. Taken together, these findings establish that pca31 acts as a suppressor of atrzf1 in abiotic stress responses through proline and cell wall metabolisms.

3.
Mol Ther ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38943249

RESUMEN

NK cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9-ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared to anti-NKG2A antibody blockade, NKG2A-knockout NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2A-deficient NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody-coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.

4.
Plant Mol Biol ; 114(1): 13, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324104

RESUMEN

E4, a ubiquitin (Ub) chain assembly factor and post-translational modification protein, plays a key role in the regulation of multiple cellular functions in plants during biotic or abiotic stress. We have more recently reported that E4 factor AtUAP1 is a negative regulator of the osmotic stress response and enhances the multi-Ub chain assembly of E3 ligase Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1). To further investigate the function of other E4 Ub factors in osmotic stress, we isolated AtUAP2, an AtUAP1 homolog, which interacted with AtRZF1, using pull-down assay and bimolecular fluorescence complementation analysis. AtUAP2, a Ub-associated motif-containing protein, interacts with oligo-Ub5, -Ub6, and -Ub7 chains. The yeast functional complementation experiment revealed that AtUAP2 functions as an E4 Ub factor. In addition, AtUAP2 is localized in the cytoplasm, different from AtUAP1. The activity of AtUAP2 was relatively strongly induced in the leaf tissue of AtUAP2 promoter-ß-glucuronidase transgenic plants by abscisic acid, dehydration, and oxidative stress. atuap2 RNAi lines were more insensitive to osmotic stress condition than wild-type during the early growth of seedlings, whereas the AtUAP2-overexpressing line exhibited relatively more sensitive responses. Analyses of molecular and physiological experiments showed that AtUAP2 could negatively mediate the osmotic stress-induced signaling. Genetic studies showed that AtRZF1 mutation could suppress the dehydration-induced sensitive phenotype of the AtUAP2-overexpressing line, suggesting that AtRZF1 acts genetically downstream of AtUAP2 during osmotic stress. Taken together, our findings show that the AtRZF1-AtUAP2 complex may play important roles in the ubiquitination pathway, which controls the osmotic stress response in Arabidopsis.


Asunto(s)
Arabidopsis , Ubiquitina , Deshidratación , Procesamiento Proteico-Postraduccional , Ubiquitinación
5.
Plant Mol Biol ; 114(4): 75, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878261

RESUMEN

Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.


Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Zea mays , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/fisiología , Zea mays/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estrés Oxidativo , Plantones/genética , Plantones/fisiología , Plantones/efectos de los fármacos , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Cell Commun Signal ; 22(1): 226, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605321

RESUMEN

Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.


Asunto(s)
Neoplasias de la Mama , Quinasas Ciclina-Dependientes , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Quinasas Ciclina-Dependientes/metabolismo
7.
BMC Pulm Med ; 24(1): 116, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443860

RESUMEN

BACKGROUND: Little attention has been paid to the pathophysiological changes in the natural history of chronic obstructive pulmonary disease (COPD). The destructions of the small airways were visualized on thoracic micro-computed tomography scan. We investigated whether small airway inflammation (SAI) was the risk for the development of COPD. METHODS: A total of 1062 patients were enrolled and analyzed in the study. The partitioned airway inflammation was determined by exhaled nitric oxide (NO) of FnNO, FeNO50, FeNO200, and calculated CaNOdual. Both FeNO200 and CaNOdual were compared to detect the promising predictor for peripheral airway/alveolar inflammation in COPD. The correlation between exhaled NO and white cell classification was evaluated to determine the inflammation type during the development of COPD. RESULTS: Exhaled NO levels (FnNO, FeNO50, FeNO200, and CaNOdual) were the highest in the COPD group compared with all other groups. Furthermore, compared with controls, exhaled NO levels (FeNO50, FeNO200, and CaNOdual) were also significantly higher in the emphysema, chronic bronchitis, and smoking groups. FeNO200 was found to be a promising predictor for peripheral airway/alveolar inflammation (area under the curve [AUC] of the receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.841) compared with CaNOdual (AUC ROC = 0.707) in COPD. FeNO200 was the main risk factor (adjusted odds ratio, 2.191; 95% CI, 1.797-2.671; p = 0.002) for the development of COPD. The blood eosinophil and basophil levels were correlated with FeNO50 and FeNO200. CONCLUSION: The complete airway inflammations were shown in COPD, whereas SAI was the main risk factor for the development of COPD, which might relate to eosinophil and basophil levels.


Asunto(s)
Bronquitis Crónica , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Microtomografía por Rayos X , Inflamación , Óxido Nítrico
8.
BMC Pulm Med ; 24(1): 196, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649893

RESUMEN

BACKGROUND: Comparisons between endurance training (ET) and resistance training (RT) have produced equivocal findings in chronic obstructive pulmonary disease (COPD) patients. The purpose of our study is to investigate the effectiveness and long-term outcomes of adding ET and RT to conventional medical treatment in patients with COPD. A secondary objective is to investigate the clinical improvements resulting from exercise training in patients with different disease severities. METHODS: The study was a multicenter, prospective trial in people with stable COPD. The cohort was randomized to three groups: individualized medical treatment group (MT), MT + endurance training group (MT + ET) and MT + resistance training group (MT + RT). Exercise was performed 3 times weekly over a 12-week period. The endpoints of exercise capacity, health-related quality of life, COPD symptoms, lung function, and anxiety and depression questionnaires were re-evaluated at baseline, at the completion of the intervention and at 6 and 12-month follow-up. According to the COPD assessment tool offered by GOLD guidelines, patients were stratified into GOLD A and B groups and GOLD C and D groups for further subgroup analysis. RESULTS: The intention-to-treat (ITT) population included 366 patients, 328 of them completed the study protocol over 12 months (the PP-population). There were no significant differences in the primary outcome, quality of life, between patients who underwent medical treatment (MT) alone, MT + endurance training (MT + ET), or MT + resistance training (MT + RT) at the completion of the intervention, 6-, or 12-month follow-up. Additionally, no significant differences were observed between MT, MT + RT, or MT + ET groups concerning the primary outcome, exercise capacity (3MWD), after initial 3 months of intervention. However, a small statistically significant difference was noted in favor of MT + ET compared to MT + RT at 12 months (ITT: Δ3MWD in ET vs RT = 5.53 m, 95% confidence interval: 0.87 to 13.84 m, P = 0.03) (PP: Δ3MWD in ET vs RT = 7.67 m, 95% confidence interval: 0.93 to 16.27 m, P = 0.04). For patients in the GOLD C and D groups, improvement in quality of life following ET or RT was significantly superior to medical intervention alone. Furthermore, upon completion of the exercise regimen, RT exhibited a greater improvement in anxiety compared to ET in these patients (ITT: ΔHAD-A at 3-month: RT = -1.63 ± 0.31 vs ET = -0.61 ± 0.33, p < 0.01) (PP: ΔHAD-A at 3-month: RT = -1.80 ± 0.36 vs ET = -0.75 ± 0.37, p < 0.01). CONCLUSIONS: Our study presents evidence of the beneficial effects of ET and RT in combination with standard medical treatment, as well as the long-term effects over time after the intervention. While the statistically significant effect favoring ET over RT in terms of exercise capacity was observed, it should be interpreted cautiously. Patients in severe stages of COPD may derive greater benefits from either ET or RT and should be encouraged accordingly. These findings have implications for exercise prescription in patients with COPD. TRIAL REGISTRATION: ChiCTR-INR-16009892 (17, Nov, 2016).


Asunto(s)
Entrenamiento Aeróbico , Tolerancia al Ejercicio , Enfermedad Pulmonar Obstructiva Crónica , Calidad de Vida , Entrenamiento de Fuerza , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Entrenamiento de Fuerza/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Entrenamiento Aeróbico/métodos , Estudios Prospectivos , Resultado del Tratamiento , Volumen Espiratorio Forzado , Ansiedad , Depresión , Terapia Combinada
9.
Anal Chem ; 95(18): 7336-7343, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37129510

RESUMEN

Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.


Asunto(s)
Técnicas Biosensibles , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Biomarcadores de Tumor/análisis , Límite de Detección , Inmunoensayo , Oro/química
10.
Inorg Chem ; 62(37): 15234-15248, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37674288

RESUMEN

Through synthesizing Ln2Zr2O7 and LnAlO3 (Ln = La, Nd, Sm) catalysts, the origin of active sites for oxidative coupling of methane (OCM) on A2B2O7 fluorite and ABO3 perovskite compounds has been compared and elucidated. Ln2Zr2O7 catalysts show much better reaction performance than the respective LnAlO3 catalysts at low temperatures (500-600 °C), but the difference will be mitigated significantly above 600 °C. The reaction performance ranks in the order of La2Zr2O7 > Nd2Zr2O7 > Sm2Zr2O7 > LaAlO3 > NdAlO3 > SmAlO3. It is revealed that the unit cell free volume (Vf) plays an important role in affecting the catalytic activity, and the Ln2Zr2O7 catalysts with a disordered defect fluorite phase have inherent oxygen vacancies, which can directly activate gas-phase O2 molecules to generate OCM reactive O2- anions. However, the oxygen vacancies of LnAlO3 with a perovskite structure can only be generated by lattice distortion/transformation above 600 °C. Moreover, Ln2Zr2O7 fluorites have weaker B-O bonds than LnAlO3 perovskites, thus making it easier to generate surface vacancies as well as active O2- sites. The surface alkalinity is intimately relevant to the active oxygen species, which act together to decide the OCM performance on both types of catalysts. Indeed, this explains that LnAlO3 catalysts show much worse performance than Ln2Zr2O7 catalysts below 600 °C, which will be evidently improved at elevated temperatures due to phase transformation.

11.
Phys Chem Chem Phys ; 25(40): 27045-27052, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791526

RESUMEN

To elucidate the effect of the A2B2O7 phase on the oxidative coupling of methane (OCM) while excluding elemental influences, La2Zr2O7 compounds with a disordered defect fluorite (La2Zr2O7-F) structure and an ordered pyrochlore phase (La2Zr2O7-P) have been synthesized. Irrespective of their element composition, the catalytic performance of La2Zr2O7-F exceeds that of La2Zr2O7-P. Furthermore, the La2Zr2O7-F surface has more oxygen vacancies/defects than the La2Zr2O7 surface because La2Zr2O7-F exhibits a higher lattice disorder degree and lower B-O bond strength, which leads to the formation of more reactive oxygen anions (O2- and O22-) and basic sites for OCM. Isotopic exchange results have testified that surface-active oxygen sites are generated due to the gaseous O2 adsorption/activation occurring on the surface vacancies via both simple and multiple hetero-exchange mechanisms. In conclusion, crystal structure is the primary factor that governs the catalytic performance of A2B2O7 compounds, with the disordered defect fluorite phase being the most optimal structure for OCM.

12.
Mol Cell ; 59(1): 50-61, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26028536

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases. Here we report that miRNAs can be oxidatively modified by ROS. We identified that miR-184 upon oxidative modification associates with the 3' UTRs of Bcl-xL and Bcl-w that are not its native targets. The mismatch of oxidized miR-184 with Bcl-xL and Bcl-w is involved in the initiation of apoptosis in the study with rat heart cell line H9c2 and mouse models. Our results reveal a model of ROS in regulating cellular events by oxidatively modifying miRNA.


Asunto(s)
Regiones no Traducidas 3'/genética , MicroARNs/metabolismo , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína bcl-X/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Miocardio/citología , Miocardio/metabolismo , Oxidación-Reducción , Interferencia de ARN , ARN Interferente Pequeño , Ratas
13.
J Nanobiotechnology ; 21(1): 32, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707835

RESUMEN

Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Humanos , Encéfalo/fisiología , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
14.
J Nanobiotechnology ; 21(1): 263, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37559085

RESUMEN

Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.


Asunto(s)
Tracto Gastrointestinal , Sistema Linfático , Humanos , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Disponibilidad Biológica , Administración Oral
15.
Anim Biotechnol ; 34(1): 85-92, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34289783

RESUMEN

This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.


Asunto(s)
Genética de Población , Cabras , Animales , Bovinos , Filogenia , Cabras/genética , Polimorfismo Genético , Exones , Repeticiones de Microsatélite , Variación Genética , Alelos
16.
Arch Gynecol Obstet ; 308(1): 281-290, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142833

RESUMEN

PURPOSE: The study aimed to establish a stable and effective animal model for the experimental study of intrauterine adhesion (IUA) by evaluating various mechanical injury methods. METHODS: A total of 140 female rats were divided into four groups according to the extent and area of endometrial injury: group A (excision area: 2.0 × 0.5 cm2), group B (excision area: 2.0 × 0.25 cm2), group C (endometrial curettage) and group D (sham operation). On the 3rd, 7th, 15th and 30th day after the operation, the tissue samples of each group were collected, and the uterine cavity stenosis and histological changes were recorded by HE and Masson staining. Immunohistochemistry of CD31 was applied to visualize microvessel density (MVD). The pregnancy rate and the number of gestational sacs were used to evaluate the reproductive outcome. RESULTS: The results showed that endometrium injured by small-area endometrial excision or simple curettage could be repaired. The ratio of fibrosis in groups A and B was higher than that in groups C and group D 30 days after modeling (P < 0.001). The number of endometrial glands and MVD in group A was significantly lower than those in groups B, C and D (P < 0.05). The pregnancy rate in group A was 20%, which was lower than that in groups B (33.3%), C (89%) and D (100%) (P < 0.05). CONCLUSION: Full-thickness endometrial excision has a high rate of success in constructing stable and effective IUA models in rats.


Asunto(s)
Enfermedades Uterinas , Embarazo , Humanos , Ratas , Femenino , Animales , Modelos Animales de Enfermedad , Enfermedades Uterinas/patología , Endometrio/patología , Útero/patología , Adherencias Tisulares/patología
17.
Ren Fail ; 45(1): 2204953, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37125614

RESUMEN

OBJECTIVES: Recent evidence suggested that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in the pathogenesis of vascular calcification (VC). In this study, we tried to explore the expression and role of a lncRNA, i.e., metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and a miRNA, i.e., miR-30c, in VC. METHODS: In vitro VC model was induced in human vascular smooth muscle cells (VSMCs) after 10 days culture in calcifying medium containing 2 mM Na2HPO4. Alizarin red S staining, calcium assay and western blot analysis of runt-related transcription factor 2 (Runx2) and alpha smooth muscle actin (α-SMA) were performed to evaluate VC. Knockdown of MALAT1 and up-regulation of MALAT1, miR-30c and Runx2 was performed to determine the impact of these molecules on VSMCs calcification. Dual-luciferase report assay was performed to confirm the relationship between MALAT1 and miR-30c or miR-30c and Runx2. In addition, quantitative reverse transcription PCR and western blot were used to determine gene and protein expression. RESULTS: MALAT1 was increased, while miR-30c was decreased in calcified VSMCs. Knockdown of MALAT1 suppressed VSMCs calcification; on the contrary, up-regulation of MALAT1 promoted VSMCs calcification. The effect of MALAT1 over-expression on VSMCs calcification was reversed by upregulation of miR-30c, which was reversed again by upregulation of Runx2. Dual-luciferase report assay confirmed that there is a direct interaction between MALAT1 and miR-30c, and Runx2 is a direct target of miR-30c. CONCLUSION: MALAT1 over-expression promoted VSMCs calcification, which was at least partially through regulating the miR-30c/Runx2 axis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Calcificación Vascular , Humanos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Calcificación Vascular/patología
18.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2530-2537, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282882

RESUMEN

This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.


Asunto(s)
Interleucina-18 , FN-kappa B , FN-kappa B/genética , FN-kappa B/metabolismo , Interleucina-18/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Ciclina D1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Músculo Liso Vascular , Proliferación Celular , Transducción de Señal , Citocinas/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo
19.
J Cell Physiol ; 237(6): 2713-2723, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35621037

RESUMEN

TMEM67 (mecklin or MKS3) locates in the transition zone of cilia. Dysfunction of TMEM67 disrupts cilia-related signaling and leads to developmental defects of multiple organs in humans. Typical autosomal recessive TMEM67 defects cause partial overlapping phenotypes, including abnormalities in the brain, eyes, liver, kidneys, bones, and so forth. However, emerging reports of isolated nephronophthisis suggest the possibility of a broader phenotype spectrum. In this study, we analyzed the genetic data of cholestasis patients with no obvious extrahepatic involvement but with an unexplained high level of gamma-glutamyl transpeptidase (GGT). We identified five Han Chinese patients from three unrelated families with biallelic nonnull low-frequency TMEM67 variants. All variants were predicted pathogenic in silico, of which p. Arg820Ile and p. Leu144del were previously unreported. In vitro studies revealed that the protein levels of the TMEM67 variants were significantly decreased; however, their interaction with MKS1 remained unaffected. All the patients, aged 7-39 years old, had silently progressive cholestasis with elevated GGT but had normal bilirubin levels. Histological studies of liver biopsy of patients 1, 3, and 5 showed the presence of congenital hepatic fibrosis. We conclude that variants in TMEM67 are associated with a mild phenotype of unexplained, persistent, anicteric, and high GGT cholestasis without typical symptoms of TMEM67 defects; this possibility should be considered by physicians in gastroenterology and hepatology.


Asunto(s)
Colestasis , gamma-Glutamiltransferasa , Colestasis/genética , Enfermedades Genéticas Congénitas , Humanos , Cirrosis Hepática/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fenotipo , gamma-Glutamiltransferasa/genética
20.
Chem Res Toxicol ; 35(1): 99-110, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34969250

RESUMEN

Endogenous DNA lesions frequently occur due to internal effects such as oxidative stress, inflammation, endogenous alkylation, and epigenetic modifications. However, exposure to chemical toxicants from the environment, diet, or drugs can also induce significant endogenous DNA damage. The quantification of endogenous DNA damage effect markers might reflect the actual DNA damage level of chemical toxicants. Herein, we report a liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ MS/MS) method for simultaneous determination of eight representative endogenous DNA damage biomarkers, including five endogenous DNA damage effect markers (oxidative damage, 8-oxo-dG; lipid peroxidation, εdA and N2-Et-dG; inflammation, 5-Cl-dC; and endogenous alkylation, O6-Me-dG), and three epigenetic modifications (5-m-dC, 5-hm-dC, and N6-Me-dA). The method validation was performed, and the linear range was 0.05 pg to 2 ng (on-column), the limit of detection was 0.02 pg (on-column), and the precision, accuracy, matrix effect, and recovery were all between 85 and 115%. We then applied this method to evaluate endogenous DNA damage to human embryonic lung fibroblast cells exposed to five nitrogen mustards [NMs, i.e., HN1, HN2, HN3, chlorambucil (CB), and cyclophosphamide (CTX)], where curcumin exposure was used as a control due to its inability to induce the formation of endogenous DNA adducts. The amounts of eight DNA adducts in the low-, middle-, and high-concentration exposure groups of five NMs were almost all significantly different from those in the blank group (P < 0.05). We obtained a positive correlation between the contents of eight DNA damage biomarkers and the inhibition dose of five NMs, except for N2-Et-dG and 5-Cl-dC. Via further principal component analysis and partial least squares discriminant analysis, we clustered all NMs into three units with different cytotoxicity levels, that is, HN2 and HN1 (highly toxic), HN3 and CB (moderately toxic), and CTX (less toxic). Moreover, for the same concentration of HN1/2/3 exposure groups, as the cytotoxicity increased according to the order of HN3 < HN1 < HN2, the contents of 8-oxo-dG, 5-m-dC, 5-hm-dC, and N6-Me-dA increased, whereas the content of O6-Me-dG decreased. Therefore, the contents of these DNA damage effect markers were somewhat related to the cytotoxicity and concentration of NMs. We hope that this method will provide an alternative evaluation approach for the toxicological effects of NMs and the safety of the medication.


Asunto(s)
Compuestos de Mostaza Nitrogenada/farmacología , Biomarcadores/análisis , Cromatografía Líquida de Alta Presión , Aductos de ADN/efectos de los fármacos , Daño del ADN , Humanos , Estructura Molecular , Compuestos de Mostaza Nitrogenada/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA