RESUMEN
We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.
Asunto(s)
Antineoplásicos , Butirilcolinesterasa , Proliferación Celular , Inhibidores de la Colinesterasa , Cumarinas , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Línea Celular Tumoral , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Aza/síntesis química , Relación Dosis-Respuesta a Droga , Neuronas/efectos de los fármacosRESUMEN
There is a continuous and pressing need to establish new brain-penetrant bioactive compounds with anti-cancer properties. To this end, a new series of 4'-((4-substituted-4,5-dihydro-1H-1,2,3-triazol-1-yl)methyl)-[1,1'-biphenyl]-2-carbonitrile (OTBN-1,2,3-triazole) derivatives were synthesized by click chemistry. The series of bioactive compounds were designed and synthesized from diverse alkynes and N3-OTBN, using copper (II) acetate monohydrate in aqueous dimethylformamide at room temperature. Besides being highly cost-effective and significantly reducing synthesis, the reaction yielded 91-98 % of the target products without the need of any additional steps or chromatographic techniques. Two analogues exhibit promising anti-cancer biological activities. Analogue 4l shows highly specific cytostatic activity against lung cancer cells, while analogue 4k exhibits pan-cancer anti-growth activity. A kinase screen suggests compound 4k has single-digit micromolar activity against kinase STK33. High STK33 RNA expression correlates strongly with poorer patient outcomes in both adult and pediatric glioma. Compound 4k potently inhibits cell proliferation, invasion, and 3D neurosphere formation in primary patient-derived glioma cell lines. The observed anti-cancer activity is enhanced in combination with specific clinically relevant small molecule inhibitors. Herein we establish a novel biochemical kinase inhibitory function for click-chemistry-derived OTBN-1,2,3-triazole analogues and further report their anti-cancer activity in vitro for the first time.
Asunto(s)
Antineoplásicos , Proliferación Celular , Química Clic , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Triazoles , Humanos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Nitrilos/química , Nitrilos/farmacología , Nitrilos/síntesis químicaRESUMEN
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Compuestos Organofosforados , Humanos , Anhidrasas Carbónicas/metabolismo , Sales (Química) , Relación Estructura-Actividad , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarinas/química , Guanidinas , Inhibidores de Anhidrasa Carbónica/química , Estructura MolecularRESUMEN
A series of new hybrid compounds was prepared combining tetrahydropyran rings with different aromatic systems by means of a 1,2,3-triazole, using a building block strategy. The design of these structures was guided by Lead-Likeness and Molecular Analysis (LLAMA) software, adding modifications to our most potent scaffold (the tetrahydropyran ring) to generate promising "lead-like" candidates, which were subsequently compared against reported anticancer compounds. Our synthesized compounds demonstrated significant antiproliferative activity when compared with the standards cisplatin and 5-fluorouracil, across a panel of six different tumor cell lines. Moreover, compared with our group's previous hybrid compounds, these new structures exhibit similar activity while offering simpler synthesis and greater potential for structural diversification, a fact that was previously an issue. Further investigations on the most active compounds included assessments of reproductive cell survival, inhibition of cell migration, and effects on nuclear morphology, indicating potential diverse mechanisms of action for these compounds. Pharmacokinetic properties were also calculated for the whole series of compounds using the pkCSM online software.
RESUMEN
To explore new compounds with antitumour activity, fifteen phenolic nor-tripterpenes isolated from Celastraceae species, Maytenus jelskii, Maytenus cuzcoina, and Celastrus vulcanicola, have been studied. Their chemical structures were elucidated through spectroscopic and spectrometric techniques, resulting in the identification of three novel chemical compounds. Evaluation on human tumour cell lines (A549 and SW1573, non-small cell lung; HBL-100 and T-47D, breast; HeLa, cervix, and WiDr, colon) revealed that three compounds, named 6-oxo-pristimerol, demethyl-zeylasteral, and zeylasteral, exhibited significant activity (GI50 ranging from 0.45 to 8.6 µM) on at least five of the cell lines tested. Continuous live cell imaging identified apoptosis as the mode of action of selective cell killing in HeLa cells. Furthermore, their effect on a drug-sensitive Saccharomyces cerevisiae strain has been investigated to deepen on their mechanism of action. In dose-response growth curves, zeylasteral and 7α-hydroxy-blepharodol were markedly active. Additionally, halo assays were conducted to assess the involvement of oxidative stress and/or mitochondrial function in the anticancer profile, ruling out these modes of action for the active compounds. Finally, we also delve into the structure-activity relationship, providing insights into how the molecular structure of these compounds influences their biological activity. This comprehensive analysis enhances our understanding of the therapeutic potential of this triterpene type and underscores its relevance for further research in this field.
Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Humanos , Apoptosis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Fenoles/farmacología , Fenoles/química , Triterpenos/farmacología , Triterpenos/química , Células HeLa , Celastraceae/química , Línea Celular Tumoral , Extractos Vegetales/farmacología , Extractos Vegetales/química , Saccharomyces cerevisiae/efectos de los fármacos , Células A549 , Estructura Molecular , Proliferación Celular/efectos de los fármacosRESUMEN
Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 µM.
RESUMEN
Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.
Asunto(s)
Antineoplásicos , Citostáticos , Selenio , Humanos , Citostáticos/farmacología , Línea Celular Tumoral , Selenio/farmacología , Cianatos/farmacología , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-ActividadRESUMEN
Natural products represent an excellent source of unprecedented anticancer compounds. However, the identification of the mechanism of action remains a major challenge. Several techniques and methodologies have been considered, but with limited success. In this work, we explored the combination of live cell imaging and machine learning techniques as a promising tool to depict in a fast and affordable test the mode of action of natural compounds with antiproliferative activity. To develop the model, we selected the non-small cell lung cancer cell line SW1573, which was exposed to the known antimitotic drugs paclitaxel, colchicine and vinblastine. The novelty of our methodology focuses on two main features with the highest relevance, (a) meaningful phenotypic metrics, and (b) fast Fourier transform (FFT) of the time series of the phenotypic parameters into their corresponding amplitudes and phases. The resulting algorithm was able to cluster the microtubule disruptors, and meanwhile showed a negative correlation between paclitaxel and the other treatments. The FFT approach was able to group the samples as efficiently as checking by eye. This methodology could easily scale to group a large amount of data without visual supervision.
Asunto(s)
Antimitóticos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antimitóticos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Neoplasias Pulmonares/metabolismo , Microtúbulos/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacología , Tubulina (Proteína)/metabolismoRESUMEN
In this work, we propose a general methodology to assess the bioactive potential (BP) of extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer potential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, Hypericum glandulosum Aiton, Hypericum grandifolium Choisy and Hypericum reflexum L.f) from the Canary Islands. Microextracts were obtained from the aerial parts of these species and were tested against six human tumor cell lines, A549 (non-small-cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small-cell lung), T-47D (breast) and WiDr (colon). The methanol-water microextracts were evaluated further for cell migration, autophagy and cell death. The most promising bioactive polar microextracts were analyzed by UHPLC-DAD-MS. The extraction yield, the bioactivity evaluation and the chemical profiling by LC-MS suggested that H. grandifolium was the species with the highest AP. Label-free live-cell imaging studies on HeLa cells exposed to the methanol-water microextract of H. grandifolium enabled observing cell death and several apoptotic hallmarks. Overall, this study allows us to select Hypericum grandifolium Choisy as a source of new chemical entities with a potential interest for cancer treatment.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Hypericum , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Femenino , Células HeLa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , España , AguaRESUMEN
Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Isatina , Neoplasias Pulmonares , Humanos , Citotoxinas , Antineoplásicos/farmacología , Línea Celular Tumoral , Isatina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Proliferación Celular , Estructura MolecularRESUMEN
The role of carbonic anhydrases isoforms (CAs) IX and XII in the pathogenesis and progression of many types of solid tumors is well known. In this context, selective CA inhibitors (CAIs) towards the mentioned isoforms is a validated strategy for the development of agents to target cancer. For this purpose, novel coumarin derivatives based on the hybridization with arylsulfonamide or biotin scaffolds were synthesized and tested as inhibitors of four different human carbonic anhydrases isoforms: hCA I, II, IX and XII. Coumarin-sulfonamide derived 27, with a thiourea moiety and triazole as linker, showed the highest inhibition activity against hCA XII with an inhibition constant (KI) of 7.5 nM and afforded a very good selectivity over hCA I. Compound 32 was the most potent inhibitor against hCA IX (KI = 6.3 nM), 4-fold stronger than the drug acetazolamide AAZ (KI = 25 nM), used herein as a reference compound, and showed remarkable selectivity over hCA I and II. The coumarin-biotin derivatives 37-39 showed outstanding selectivity towards on-target enzymes (hCA IX and XII) and appear as plausible leads for designing of CAIs.
RESUMEN
Polyporoid fungi represent a vast source of bioactive compounds with potential pharmacological applications. The importance of polyporoid fungi in traditional Chinese medicine has led to an extensive use of some species of Ganoderma for promoting health and longevity because their consumption is associated with several bioactivities. Nevertheless, bioactivity of some other members of the Polyporaceae family has also been reported. This work reports the antiproliferative and antibacterial activity of crude extracts obtained from fruiting bodies of polypore fungi collected from the central region of Veracruz, Mexico, aimed at understanding the diversity of polypore species with potential pharmacological applications. 29 collections were identified macro- and microscopically in 19 species of polyporoid fungi, belonging to 13 genera. The antiproliferative activity screening of extracts against solid tumor cell lines (A549, SW1573, HeLa, HBL-100, T-47D, WiDr) allow us to identify four extracts with strong bioactivity [half-maximal growth inhibition (GI50) ≤ 50 µg/mL]. After this, a phylogenetic analysis of DNA sequences from the ITS region obtained from bioactive specimens allowed us to identify three extracts as Pycnoporus sanguineus (GI50 = ≤ 10 µg/mL) and the fourth bioactive extract as Ganoderma oerstedii (GI50 = < 50 µg/mL. Likewise, extracts from P. sanguineus showed mild or moderate antibacterial activity against Escherichia coli, Staphylococcus aureus and Xanthomonas albilineas. Bioprospecting studies of polyporoid fungi add to the knowledge of the diversity of macrofungi in Mexico and allow us to select one of the bioactive P. sanguineus to continue the pursuit of bioactive compounds through mycochemical studies.
Asunto(s)
Antibacterianos , Filogenia , México , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Polyporaceae/química , Polyporaceae/clasificación , Cuerpos Fructíferos de los Hongos/química , Pruebas de Sensibilidad MicrobianaRESUMEN
In the present work, derivatives of phenanthridine-6(5H)-ones and benzo[c]chromenes were efficiently prepared through an intramolecular C-H bond functionalization reaction catalyzed by photochemically synthesized Pd-PVP nanoparticles. The heterocycles were obtained via intramolecular arylation of the corresponding N-methyl-N-aryl-2-halobenzamide or aryl-(2-halo)benzyl ethers using K2CO3 as base in a mixture of H2O : DMA as solvent without additives or ligands. High yields of the heterocyclic compounds were achieved (up to 95%) using a moderately low catalyst loading (1-5 mol%) under an air atmosphere at 100 °C. The reaction exhibited very good tolerance to diverse functional groups (OMe, Me, t Bu, Ph, OCF3, CF3, F, Cl, -CN, Naph), and both bromine and iodine substrates showed great reactivity. Finally, the in vitro antiproliferative activity of phenanthridine-6(5H)-ones and benzo[c]chromenes was evaluated against six human solid tumor cell lines. The more active compounds exhibit activity in the low micromolar range. 1-Isopropyl-4-methyl-6H-benzo[c]chromene was identified as the best compound with promising values of activity (GI50 range 3.9-8.6 µM). Thus, the benzochromene core was highlighted as a novel organic building block to prepare potential antitumor agents.
RESUMEN
Complexes [{RuCp(PPh3)2-µ-dmoPTA-1κP:2κ2-N,N'-CuCl}2-µ-Cl-µ-OCH3](CF3SO3)2·(CH3OH)4 (1) and [{RuCp(PPh3)2-µ-dmoPTA-1κP:2κ2-N,N'-NiCl}2-µ-Cl-µ-OH](CF3SO3)2 (2) have been synthesized and characterized. Their antiproliferative activities were assessed against six human solid tumours showing nanomolar GI50 values. The effects of 1 and 2 on SW1573 cells colony formation, HeLa cells action mechanism and their interaction with the pBR322 DNA plasmid were evaluated.
Asunto(s)
ADN , Humanos , Células HeLaRESUMEN
The unique electronic properties of the fluorine atom make its strategic incorporation into a bioactive compound a very useful tool in the design of drugs with optimized pharmacological properties. In the field of the carbohydrates, its selective installation at C2 position has proven particularly interesting, some 2-deoxy-2-fluorosugar derivatives being currently in the market. We have now transferred this feature into immunoregulatory glycolipid mimetics that contain a sp2-iminosugar moiety, namely sp2-iminoglycolipids (sp2-IGLs). The synthesis of two epimeric series of 2-deoxy-2-fluoro-sp2-IGLs, structurally related to nojirimycin and mannonojirimycin, has been accomplished by sequential Selectfluor-mediated fluorination and thioglycosidation of sp2-iminoglycals. Exclusively the α-anomer is obtained regardless of the configurational profile of the sp2-IGL (d-gluco or d-manno), highlighting the overwhelming anomeric effect in these prototypes. Notably, the combination of a fluorine atom at C2 and an α-oriented sulfonyl dodecyl lipid moiety in compound 11 led to remarkable anti-proliferative properties, featuring similar GI50 values than the chemotherapy drug Cisplatin against several tumor cell lines and better selectivity. The biochemical data further evidence a strong reduction of the number of tumor cell colonies and apoptosis induction. Mechanistic investigations revealed that this fluoro-sp2-IGL induces the non-canonical activation mode of the mitogen-activated protein kinase signaling pathway, causing p38α autoactivation under an inflammatory context.
Asunto(s)
Carbohidratos , Flúor , Flúor/química , Carbohidratos/química , Glucolípidos/química , Línea Celular TumoralRESUMEN
In this study, we demonstrate a simple, highly efficient, rapid and convenient series of 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7H)-ones 4a-v. Microwave irradiation facilitates the one-pot multicomponent reaction of different aromatic aldehydes, 6-amino-2,4-dimethoxypyrimidine and dimedone using glacial acetic acid. Metal-free multicomponent synthesis, shorter reaction time, higher product yield, easy product purification without column chromatography and outstanding green credential parameters are the key features of this protocol. We analysed 4a-v against six human tumour cell lines for antiproliferative activity. 4h, 4o, 4q and 4v show good antiproliferative activity with a good in silico ADMET profile. Furthermore, 4h, 4o, 4q and 4v also show drug-likeness properties by obeying drug-like filters.