Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 201(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559113

RESUMEN

The flagellar lipoprotein FlgP has been identified in several species of bacteria, and its absence provokes different phenotypes. In this study, we show that in the alphaproteobacterium Rhodobacter sphaeroides, a ΔflgP mutant is unable to assemble the hook and the filament. In contrast, the membrane/supramembrane (MS) ring and the flagellar rod appear to be assembled. In the absence of FlgP a severe defect in the transition from rod to hook polymerization occurs. In agreement with this idea, we noticed a reduction in the amount of intracellular flagellin and the chemotactic protein CheY4, both encoded by genes dependent on σ28 This suggests that in the absence of flgP the switch to export the anti-sigma factor, FlgM, does not occur. The presence of FlgP was detected by Western blot in samples of isolated wild-type filament basal bodies, indicating that FlgP is an integral part of the flagellar structure. In this regard, we show that FlgP interacts with FlgH and FlgT, indicating that FlgP should be localized closely to the L and H rings. We propose that FlgP could affect the architecture of the L ring, which has been recently identified to be responsible for the rod-hook transition.IMPORTANCE Flagellar based motility confers a selective advantage on bacteria by allowing migration to favorable environments or in pathogenic species to reach the optimal niche for colonization. The flagellar structure has been well established in Salmonella However, other accessory components have been identified in other species. Many of these have been implied in adapting the flagellar function to enable faster rotation, or higher torque. FlgP has been proposed to be the main component of the basal disk located underlying the outer membrane in Campylobacter jejuni and Vibrio fischeri Its role is still unclear, and its absence impacts motility differently in different species. The study of these new components will bring a better understanding of the evolution of this complex organelle.


Asunto(s)
Flagelos/metabolismo , Flagelina/metabolismo , Lipoproteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Western Blotting , Flagelos/fisiología , Flagelina/genética , Eliminación de Gen , Lipoproteínas/deficiencia , Mapeo de Interacción de Proteínas , Rhodobacter sphaeroides/genética
2.
Biochem Biophys Res Commun ; 509(2): 341-347, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30585150

RESUMEN

The mitochondrial ATP synthase of Polytomella exhibits a peripheral stalk and a dimerization domain built by the Asa subunits, unique to chlorophycean algae. The topology of these subunits has been extensively studied. Here we explored the interactions of subunit Asa3 using Far Western blotting and subcomplex reconstitution, and found it associates with Asa1 and Asa8. We also identified the novel interactions Asa1-Asa2 and Asa1-Asa7. In silico analyses of Asa3 revealed that it adopts a HEAT repeat-like structure that points to its location within the enzyme based on the available 3D-map of the algal ATP synthase. We suggest that subunit Asa3 is instrumental in securing the attachment of the peripheral stalk to the membrane sector, thus stabilizing the dimeric mitochondrial ATP synthase.


Asunto(s)
Proteínas Algáceas/química , Membrana Celular/química , Chlorophyceae/química , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlorophyceae/enzimología , Chlorophyceae/genética , Chlorophyceae/ultraestructura , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1859(6): 434-444, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29540299

RESUMEN

The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-ß-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.


Asunto(s)
Proteínas Algáceas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fosforilación Oxidativa , Volvocida/metabolismo , Proteínas Algáceas/genética , Detergentes/química , Digitonina/química , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Expresión Génica , Glucósidos/química , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Unión Proteica , Volvocida/genética
4.
Biochim Biophys Acta Bioenerg ; 1858(7): 497-509, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28472636

RESUMEN

Mitochondrial F1FO-ATP synthase of the chlorophycean algae Polytomella sp. can be isolated as a highly stable dimeric complex of 1600kDa. It is composed of eight highly conserved orthodox subunits (α, ß, γ, δ, ε, OSCP, a, and c) and nine subunits (Asa1-9) that are exclusive of chlorophycean algae. The Asa subunits replace those that build up the peripheral stalk and the dimerization domains of the ATP synthase in other organisms. Little is known about the disposition of subunits Asa6, Asa8 and Asa9, that are predicted to have transmembrane stretches and that along with subunit a and a ring of c-subunits, seem to constitute the membrane-embedded Fo domain of the algal ATP synthase. Here, we over-expressed and purified the three Asa hydrophobic subunits and explored their interactions in vitro using a combination of immunochemical techniques, affinity chromatography, and an in vivo yeast-two hybrid assays. The results obtained suggest the following interactions Asa6-Asa6, Asa6-Asa8, Asa6-Asa9, Asa8-Asa8 and Asa8-Asa9. Cross-linking experiments carried out with the intact enzyme corroborated some of these interactions. Based on these results, we propose a model of the disposition of these hydrophobic subunits in the membrane-embedded sector of the algal ATP synthase. We also propose based on sequence analysis and hydrophobicity plots, that the algal subunit a is atypical in as much it lacks the first transmembrane stretch, exhibiting only four hydrophobic, tilted alpha helices.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorophyta/enzimología , Proteínas de la Membrana/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Algáceas/química , Microscopía por Crioelectrón , Dimerización , Proteínas de la Membrana/química , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Moleculares , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas , Subunidades de Proteína , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
Biochim Biophys Acta Bioenerg ; 1858(4): 267-275, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28089911

RESUMEN

Mitochondrial respiratory-chain complexes from Euglenozoa comprise classical subunits described in other eukaryotes (i.e. mammals and fungi) and subunits that are restricted to Euglenozoa (e.g. Euglena gracilis and Trypanosoma brucei). Here we studied the mitochondrial F1FO-ATP synthase (or Complex V) from the photosynthetic eukaryote E. gracilis in detail. The enzyme was purified by a two-step chromatographic procedure and its subunit composition was resolved by a three-dimensional gel electrophoresis (BN/SDS/SDS). Twenty-two different subunits were identified by mass-spectrometry analyses among which the canonical α, ß, γ, δ, ε, and OSCP subunits, and at least seven subunits previously found in Trypanosoma. The ADP/ATP carrier was also associated to the ATP synthase into a dimeric ATP synthasome. Single-particle analysis by transmission electron microscopy of the dimeric ATP synthase indicated that the structures of both the catalytic and central rotor parts are conserved while other structural features are original. These new features include a large membrane-spanning region joining the monomers, an external peripheral stalk and a structure that goes through the membrane and reaches the inter membrane space below the c-ring, the latter having not been reported for any mitochondrial F-ATPase.


Asunto(s)
Euglena gracilis/enzimología , ATPasas de Translocación de Protón Mitocondriales/análisis , Microscopía Electrónica , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Multimerización de Proteína , Subunidades de Proteína/análisis
6.
Biochim Biophys Acta ; 1857(4): 359-69, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26657474

RESUMEN

Mitochondrial F1FO-ATP synthase of chlorophycean algae is dimeric. It contains eight orthodox subunits (alpha, beta, gamma, delta, epsilon, OSCP, a and c) and nine atypical subunits (Asa1 to 9). These subunits build the peripheral stalk of the enzyme and stabilize its dimeric structure. The location of the 66.1kDa subunit Asa1 has been debated. On one hand, it was found in a transient subcomplex that contained membrane-bound subunits Asa1/Asa3/Asa5/Asa8/a (Atp6)/c (Atp9). On the other hand, Asa1 was proposed to form the bulky structure of the peripheral stalk that contacts the OSCP subunit in the F1 sector. Here, we overexpressed and purified the recombinant proteins Asa1 and OSCP and explored their interactions in vitro, using immunochemical techniques and affinity chromatography. Asa1 and OSCP interact strongly, and the carboxy-terminal half of OSCP seems to be instrumental for this association. In addition, the algal ATP synthase was partially dissociated at relatively high detergent concentrations, and an Asa1/Asa3/Asa5/Asa8/a/c10 subcomplex was identified. Furthermore, Far-Western analysis suggests an Asa1-Asa8 interaction. Based on these results, a model is proposed in which Asa1 spans the whole peripheral arm of the enzyme, from a region close to the matrix-exposed side of the mitochondrial inner membrane to the F1 region where OSCP is located. 3D models show elongated, helix-rich structures for chlorophycean Asa1 subunits. Asa1 subunit probably plays a scaffolding role in the peripheral stalk analogous to the one of subunit b in orthodox mitochondrial enzymes.


Asunto(s)
Chlorophyta/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Subunidades de Proteína
7.
Biochim Biophys Acta ; 1857(8): 1183-1190, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26873638

RESUMEN

The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Proteínas Algáceas/química , Chlamydomonas reinhardtii/química , Mitocondrias/química , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química , Volvocida/química , Proteínas Algáceas/genética , Proteínas Algáceas/aislamiento & purificación , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Expresión Génica , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Modelos Moleculares , Péptidos/química , Péptidos/genética , Péptidos/aislamiento & purificación , Polímeros/química , Propilaminas/química , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Volvocida/enzimología , Volvocida/genética
8.
J Bioenerg Biomembr ; 49(6): 453-461, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29043530

RESUMEN

Subunit II of cytochrome c oxidase (Cox2) is usually encoded in the mitochondrial genome, synthesized in the organelle, inserted co-translationally into the inner mitochondrial membrane, and assembled into the respiratory complex. In chlorophycean algae however, the cox2 gene was split into the cox2a and cox2b genes, and in some algal species like Chlamydomonas reinhardtii and Polytomella sp. both fragmented genes migrated to the nucleus. The corresponding Cox2A and Cox2B subunits are imported into mitochondria forming a heterodimeric Cox2 subunit. When comparing the sequences of chlorophycean Cox2A and Cox2B proteins with orthodox Cox2 subunits, a C-terminal extension in Cox2A and an N-terminal extension in Cox2B were identified. It was proposed that these extensions favor the Cox2A/Cox2B interaction. In vitro studies carried out in this work suggest that the removal of the Cox2B extension only partially affects binding of Cox2B to Cox2A. We conclude that this extension is dispensable, but when present it weakly reinforces the Cox2A/Cox2B interaction.


Asunto(s)
Chlorophyta/enzimología , Complejo IV de Transporte de Electrones/química , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
9.
Biochim Biophys Acta ; 1837(1): 1-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23933283

RESUMEN

Mitochondrial F1FO-ATP synthase of chlorophycean algae is a complex partially embedded in the inner mitochondrial membrane that is isolated as a highly stable dimer of 1600kDa. It comprises 17 polypeptides, nine of which (subunits Asa1 to 9) are not present in classical mitochondrial ATP synthases and appear to be exclusive of the chlorophycean lineage. In particular, subunits Asa2, Asa4 and Asa7 seem to constitute a section of the peripheral stalk of the enzyme. Here, we over-expressed and purified subunits Asa2, Asa4 and Asa7 and the corresponding amino-terminal and carboxy-terminal halves of Asa4 and Asa7 in order to explore their interactions in vitro, using immunochemical techniques, blue native electrophoresis and affinity chromatography. Asa4 and Asa7 interact strongly, mainly through their carboxy-terminal halves. Asa2 interacts with both Asa7 and Asa4, and also with subunit α in the F1 sector. The three Asa proteins form an Asa2/Asa4/Asa7 subcomplex. The entire Asa7 and the carboxy-terminal half of Asa4 seem to be instrumental in the interaction with Asa2. Based on these results and on computer-generated structural models of the three subunits, we propose a model for the Asa2/Asa4/Asa7 subcomplex and for its disposition in the peripheral stalk of the algal ATP synthase.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Péptidos/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , Simulación por Computador , Dimerización , Electroforesis en Gel de Poliacrilamida , Membranas Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Complejos Multiproteicos , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/aislamiento & purificación , Volvocida/enzimología
10.
Arch Biochem Biophys ; 575: 30-7, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25843420

RESUMEN

The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón/metabolismo , Volvocida/enzimología , Adenosina Difosfato/farmacología , Diciclohexilcarbodiimida/farmacología , Dimerización , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Oligomicinas/farmacología , Proteolisis , ATPasas de Translocación de Protón/antagonistas & inhibidores
11.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38626319

RESUMEN

Mitochondrial genes can be artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the 2 different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.


Asunto(s)
Complejo IV de Transporte de Electrones , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Transporte de Proteínas
12.
Biochim Biophys Acta ; 1817(5): 819-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22425815

RESUMEN

In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.


Asunto(s)
Chlorophyta/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Núcleo Celular/enzimología , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Ratas
13.
Biochim Biophys Acta ; 1817(2): 353-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22138628

RESUMEN

In the branched mitochondrial respiratory chain from Yarrowia lipolytica there are two alternative oxido-reductases that do not pump protons, namely an external type II NADH dehydrogenase (NDH2e) and the alternative oxidase (AOX). Direct electron transfer between these proteins is not coupled to ATP synthesis and should be avoided in most physiological conditions. However, under low energy-requiring conditions an uncoupled high rate of oxygen consumption would be beneficial, as it would prevent overproduction of reactive oxygen species (ROS). In mitochondria from high energy-requiring, logarithmic-growth phase cells, most NDH2e was associated to cytochrome c oxidase and electrons from NADH were channeled to the cytochromic pathway. In contrast, in the low energy requiring, late stationary-growth phase, complex IV concentration decreased, the cells overexpressed NDH2e and thus a large fraction of this enzyme was found in a non-associated form. Also, the NDH2e-AOX uncoupled pathway was activated and the state IV external NADH-dependent production of ROS decreased. Association/dissociation of NDH2e to/from complex IV is proposed to be the switch that channels electrons from external NADH to the coupled cytochrome pathway or allows them to reach an uncoupled, alternative, ΔΨ-independent pathway.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo , Ciclo Celular/fisiología , Respiración de la Célula/fisiología , Regulación hacia Abajo , Activación Enzimática , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Organismos Modificados Genéticamente , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Consumo de Oxígeno/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Análisis Espectral , Yarrowia/enzimología , Yarrowia/genética
14.
Biochim Biophys Acta ; 1817(12): 2128-39, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22985601

RESUMEN

Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.


Asunto(s)
Citoplasma/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Mutación Puntual/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Respiración de la Célula/fisiología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Inmunoensayo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Electroforesis en Gel de Poliacrilamida Nativa , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem
15.
Mitochondrion ; 73: 30-50, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739243

RESUMEN

Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (µΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (µΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for µΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Genes Mitocondriales , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Phylogenet Evol ; 64(1): 166-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22724135

RESUMEN

In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.


Asunto(s)
Núcleo Celular/genética , Chlorophyta/genética , Ciclooxigenasa 2/genética , Modelos Genéticos , Filogenia , Secuencia de Aminoácidos , Secuencia de Bases , Análisis por Conglomerados , Codón/genética , Biología Computacional , Cartilla de ADN/genética , ADN Mitocondrial/genética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
17.
Biochim Biophys Acta Bioenerg ; 1863(6): 148569, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35577152

RESUMEN

Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.


Asunto(s)
Glucógeno Sintasa , ATPasas de Translocación de Protón Mitocondriales , Adenosina Trifosfato/metabolismo , Glucógeno Sintasa/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo
18.
Biochim Biophys Acta ; 1797(8): 1533-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20416275

RESUMEN

Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.


Asunto(s)
Chlamydomonas/fisiología , Cloroplastos/fisiología , Mitocondrias/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Adenosina Trifosfato/metabolismo , Cloroplastos/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , Fotosíntesis , Subunidades de Proteína
19.
Biochim Biophys Acta ; 1797(8): 1439-48, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20188694

RESUMEN

Mitochondrial F1F0-ATP synthase of chlorophycean algae is a dimeric complex of 1600 kDa constituted by 17 different subunits with varying stoichiometries, 8 of them conserved in all eukaryotes and 9 that seem to be unique to the algal lineage (subunits ASA1-9). Two different models proposing the topological assemblage of the nine ASA subunits in the ATP synthase of the colorless alga Polytomella sp. have been put forward. Here, we readdressed the overall topology of the enzyme with different experimental approaches: detection of close vicinities between subunits based on cross-linking experiments and dissociation of the enzyme into subcomplexes, inference of subunit stoichiometry based on cysteine residue labelling, and general three-dimensional structural features of the complex as obtained from small-angle X-ray scattering and electron microscopy image reconstruction. Based on the available data, we refine the topological arrangement of the subunits that constitute the mitochondrial ATP synthase of Polytomella sp.


Asunto(s)
Chlorophyta/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , Multimerización de Proteína , Microscopía Electrónica , Subunidades de Proteína , Dispersión de Radiación
20.
Mol Biol Evol ; 27(7): 1630-44, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20156838

RESUMEN

In yeast, mammals, and land plants, mitochondrial F(1)F(O)-ATP synthase (complex V) is a remarkable enzymatic machinery that comprises about 15 conserved subunits. Peculiar among eukaryotes, complex V from Chlamydomonadales algae (order of chlorophycean class) has an atypical subunit composition of its peripheral stator and dimerization module, with nine subunits of unknown evolutionary origin (Asa subunits). In vitro, this enzyme exhibits an increased stability of its dimeric form, and in vivo, Chlamydomonas reinhardtii cells are insensitive to oligomycins, which are potent inhibitors of proton translocation through the F(O) moiety. In this work, we showed that the atypical features of the Chlamydomonadales complex V enzyme are shared by the other chlorophycean orders. By biochemical and in silico analyses, we detected several atypical Asa subunits in Scenedesmus obliquus (Sphaeropleales) and Chlorococcum ellipsoideum (Chlorococcales). In contrast, complex V has a canonical subunit composition in other classes of Chlorophytes (Trebouxiophyceae, Prasinophyceae, and Ulvophyceae) as well as in Streptophytes (land plants), and in Rhodophytes (red algae). Growth, respiration, and ATP levels in Chlorophyceae were also barely affected by oligomycin concentrations that affect representatives of the other classes of Chlorophytes. We finally studied the function of the Asa7 atypical subunit by using RNA interference in C. reinhardtii. Although the loss of Asa7 subunit has no impact on cell bioenergetics or mitochondrial structures, it destabilizes in vitro the enzyme dimeric form and renders growth, respiration, and ATP level sensitive to oligomycins. Altogether, our results suggest that the loss of canonical components of the complex V stator happened at the root of chlorophycean lineage and was accompanied by the recruitment of novel polypeptides. Such a massive modification of complex V stator features might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel. In these respects, we discuss an evolutionary scenario for F(1)F(O)-ATP synthase in the whole green lineage (i.e., Chlorophyta and Streptophyta).


Asunto(s)
Chlorophyta/enzimología , Resistencia a Medicamentos , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Oligomicinas/farmacología , Subunidades de Proteína/metabolismo , Adenosina Trifosfato/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/genética , Chlorophyta/crecimiento & desarrollo , Dimerización , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Filogenia , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Protones , ARN Interferente Pequeño/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA