Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biomacromolecules ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018332

RESUMEN

A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-ß-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.

2.
Epilepsia ; 64(9): 2499-2514, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37277947

RESUMEN

OBJECTIVE: Ischemic stroke is one of the main causes of death and disability worldwide and currently has limited treatment options. Electroencephalography (EEG) signals are significantly affected in stroke patients during the acute stage. In this study, we preclinically characterized the brain electrical rhythms and seizure activity during the hyperacute and late acute phases in a hemispheric stroke model with no reperfusion. METHODS: EEG signals and seizures were studied in a model of hemispheric infarction induced by permanent occlusion of the middle cerebral artery (pMCAO), which mimics the clinical condition of stroke patients with permanent ischemia. Electrical brain activity was also examined using a photothrombotic (PT) stroke model. In the PT model, we induced a similar (PT group-1) or smaller (PT group-2) cortical lesion than in the pMCAO model. For all models, we used a nonconsanguineous mouse strain that mimics human diversity and genetic variation. RESULTS: The pMCAO hemispheric stroke model exhibited thalamic-origin nonconvulsive seizures during the hyperacute stage that propagated to the thalamus and cortex. The seizures were also accompanied by progressive slowing of the EEG signal during the acute phase, with elevated delta/theta, delta/alpha, and delta/beta ratios. Cortical seizures were also confirmed in the PT stroke model of similar lesions as in the pMCAO model, but not in the PT model of smaller injuries. SIGNIFICANCE: In the clinically relevant pMCAO model, poststroke seizures and EEG abnormalities were inferred from recordings of the contralateral hemisphere (noninfarcted hemisphere), emphasizing the reciprocity of interhemispheric connections and that injuries affecting one hemisphere had consequences for the other. Our results recapitulate many of the EEG signal hallmarks seen in stroke patients, thereby validating this specific mouse model for the examination of the mechanistic aspects of brain function and for the exploration of the reversion or suppression of EEG abnormalities in response to neuroprotective and anti-epileptic therapies.


Asunto(s)
Trastornos Cerebrovasculares , Accidente Cerebrovascular , Humanos , Ratones , Animales , Accidente Cerebrovascular/complicaciones , Convulsiones , Encéfalo , Electroencefalografía/efectos adversos , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Tálamo
3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569630

RESUMEN

Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good ß-amyloid (Aß) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aß1-40, Aß1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aß plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/psicología , Tacrina/farmacología , Tacrina/uso terapéutico , Butirilcolinesterasa , Peróxido de Hidrógeno/uso terapéutico , Péptidos beta-Amiloides , Ratones Transgénicos , Modelos Animales de Enfermedad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico
4.
Soft Matter ; 18(26): 4973-4982, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748816

RESUMEN

Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.


Asunto(s)
Bombyx , Seda , Animales , Seda/química , Espectrofotometría Infrarroja , Difracción de Rayos X
5.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806455

RESUMEN

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.


Asunto(s)
Isquemia Encefálica , Depresión de Propagación Cortical , Anciano , Boratos/farmacología , Isquemia Encefálica/patología , Circulación Cerebrovascular/fisiología , Humanos , Infarto , Neuroprotección , Especies Reactivas de Oxígeno
6.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807389

RESUMEN

High-performance regenerated silkworm (Bombyx mori) silk fibers can be produced efficiently through the straining flow spinning (SFS) technique. In addition to an enhanced biocompatibility that results from the removal of contaminants during the processing of the material, regenerated silk fibers may be functionalized conveniently by using a range of different strategies. In this work, the possibility of implementing various functionalization techniques is explored, including the production of fluorescent fibers that may be tracked when implanted, the combination of the fibers with enzymes to yield fibers with catalytic properties, and the functionalization of the fibers with cell-adhesion motifs to modulate the adherence of different cell lineages to the material. When considered globally, all these techniques are a strong indication not only of the high versatility offered by the functionalization of regenerated fibers in terms of the different chemistries that can be employed, but also on the wide range of applications that can be covered with these functionalized fibers.


Asunto(s)
Bombyx , Fibroínas , Animales , Adhesión Celular , Seda
7.
Glia ; 66(11): 2340-2352, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30144323

RESUMEN

Intercellular communication via gap junction channels between oligodendrocytes and between astrocytes as well as between these cell types is essential to maintain the integrity of myelin in the central nervous system. Oligodendrocyte gap junction connexin-47 (Cx47) is a key element in this crosstalk and indeed, mutations in human Cx47 cause severe myelin disorders. However, the permeation properties of channels of Cx47 alone and in heterotypic combination with astrocyte Cx43 remain unclear. We show here that Cx47 contains three extra residues at 5' amino-terminus that play a critical role in the channel pore structure and account for relative low ionic conductivity, cationic permselectivity and voltage-gating properties of oligodendrocyte-oligodendrocyte Cx47 channels. Regarding oligodendrocyte-astrocyte coupling, heterotypic channels formed by Cx47 with Cx43 exhibit ionic and chemical rectification, which creates a directional diffusion barrier for the movement of ions and larger negatively charged molecules from cells expressing Cx47 to those with Cx43. The restrictive permeability of Cx47 channels and the diffusion barrier of Cx47-Cx43 channels was abolished by a mutation associated with leukodystrophy, the Cx47P90S, suggesting a novel pathogenic mechanism underlying myelin disorders that involves alterations in the panglial permeation.


Asunto(s)
Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Intercelulares/metabolismo , Animales , Carbenoxolona/farmacología , Línea Celular Tumoral , Estimulación Eléctrica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Uniones Intercelulares/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Microinyecciones , Modelos Moleculares , Mutagénesis , Neuroblastoma/patología , Oocitos , Transfección , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 109(23): 9071-6, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22611193

RESUMEN

Hematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene. Our studies, however, reveal that hematopoietic-specific Cx43 deficiency does not result in significant long-term competitive repopulation deficiency. Instead, hematopoietic Cx43 (H-Cx43) deficiency delays hematopoietic recovery after myeloablation with 5-fluorouracil (5-FU). 5-FU-treated H-Cx43-deficient HSC and progenitors (HSC/P) cells display decreased survival and fail to enter the cell cycle to proliferate. Cell cycle quiescence is associated with down-regulation of cyclin D1, up-regulation of the cyclin-dependent kinase inhibitors, p21(cip1.) and p16(INK4a), and Forkhead transcriptional factor 1 (Foxo1), and activation of p38 mitogen-activated protein kinase (MAPK), indicating that H-Cx43-deficient HSCs are prone to senescence. The mechanism of increased senescence in H-Cx43-deficient HSC/P cells depends on their inability to transfer reactive oxygen species (ROS) to the HM, leading to accumulation of ROS within HSCs. In vivo antioxidant administration prevents the defective hematopoietic regeneration, as well as exogenous expression of Cx43 in HSC/P cells. Furthermore, ROS transfer from HSC/P cells to BM stromal cells is also rescued by reexpression of Cx43 in HSC/P. Finally, the deficiency of Cx43 in the HM phenocopies the hematopoietic defect in vivo. These results indicate that Cx43 exerts a protective role and regulates the HSC/P ROS content through ROS transfer to the HM, resulting in HSC protection during stress hematopoietic regeneration.


Asunto(s)
Senescencia Celular/fisiología , Conexina 43/metabolismo , Regulación de la Expresión Génica/fisiología , Células Madre Hematopoyéticas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Células del Estroma/metabolismo , Animales , Conexina 43/deficiencia , Citometría de Flujo , Fluorouracilo/farmacología , Células Madre Hematopoyéticas/metabolismo , Lentivirus , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética
9.
Am J Physiol Endocrinol Metab ; 306(12): E1354-66, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24735890

RESUMEN

The existence of functional connexin36 (Cx36) hemichannels in ß-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 µM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC50 ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet ß-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.


Asunto(s)
Glucemia/metabolismo , Conexinas/antagonistas & inhibidores , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Regulación hacia Arriba , Adenosina Trifosfato/metabolismo , Animales , Glucemia/análisis , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Intolerancia a la Glucosa/sangre , Heterocigoto , Hiperglucemia/etiología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba/efectos de los fármacos , Proteína delta-6 de Union Comunicante
10.
Blood ; 119(22): 5144-54, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22498741

RESUMEN

Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals.


Asunto(s)
Movimiento Celular/fisiología , Conexina 43/metabolismo , Células Madre Hematopoyéticas/metabolismo , Osteoblastos/metabolismo , Nicho de Células Madre/fisiología , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Conexina 43/genética , Células Madre Hematopoyéticas/citología , Ratones , Ratones Mutantes , Osteoblastos/citología
11.
Glia ; 61(12): 1976-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123415

RESUMEN

Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Animales , Carbenoxolona/farmacología , Conexinas/genética , Estimulación Eléctrica , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/genética , Masculino , Ratones , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Células de Schwann/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Xenopus laevis , Proteína beta1 de Unión Comunicante
12.
J Funct Biomater ; 14(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504837

RESUMEN

Titanium (Ti-6Al-4V) substrates were functionalized through the covalent binding of fibronectin, and the effect of the existence of this extracellular matrix protein on the surface of the material was assessed by employing mesenchymal stem cell (MSC) cultures. The functionalization process comprised the usage of the activation vapor silanization (AVS) technique to deposit a thin film with a high surface density of amine groups on the material, followed by the covalent binding of fibronectin to the amine groups using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The biological effect of the fibronectin on murine MSCs was assessed in vitro. It was found that functionalized samples not only showed enhanced initial cell adhesion compared with bare titanium, but also a three-fold increase in the cell area, reaching values comparable to those found on the polystyrene controls. These results provide compelling evidence of the potential to modulate the response of the organism to an implant through the covalent binding of extracellular matrix proteins on the prosthesis.

13.
Biomimetics (Basel) ; 8(1)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36810396

RESUMEN

After an injury, the limited regenerative capacity of the central nervous system makes the reconnection and functional recovery of the affected nervous tissue almost impossible. To address this problem, biomaterials appear as a promising option for the design of scaffolds that promote and guide this regenerative process. Based on previous seminal works on the ability of regenerated silk fibroin fibers spun through the straining flow spinning (SFS) technique, this study is intended to show that the usage of functionalized SFS fibers allows an enhancement of the guidance ability of the material when compared with the control (nonfunctionalized) fibers. It is shown that the axons of the neurons not only tend to follow the path marked by the fibers, in contrast to the isotropic growth observed on conventional culture plates, but also that this guidance can be further modulated through the biofunctionalization of the material with adhesion peptides. Establishing the guidance ability of these fibers opens the possibility of their use as implants for spinal cord injuries, so that they may represent the core of a therapy that would allow the reconnection of the injured ends of the spinal cord.

14.
Int J Biol Macromol ; 244: 125369, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37321435

RESUMEN

The adhesion forces of cells to peptide-coated functionalized materials were assessed through the Single Cell Force Spectroscopy (SCFS) technique in order to develop a methodology that allows the fast selection of peptide motifs that favor the interaction between cells and the biomaterial. Borosilicate glasses were functionalized using the activated vapor silanization process (AVS) and subsequently decorated with an RGD- containing peptide using the EDC/NHS crosslinking chemistry. It is shown that the RGD-coated glass induces larger attachment forces on mesenchymal stem cell cultures (MSCs), compared to the bare glass substrates. These higher forces correlate well with the enhanced adhesion of the MSCs observed on RGD-coated substrates through conventional adhesion cell cultures and inverse centrifugation tests. The methodology based on the SCFS technique presented in this work constitutes a fast procedure for the screening of new peptides or their combinations to select candidates that may enhance the response of the organism to the implant of the functionalized biomaterials.


Asunto(s)
Materiales Biocompatibles , Oligopéptidos , Adhesión Celular/fisiología , Análisis Espectral/métodos , Materiales Biocompatibles/química , Oligopéptidos/química , Microscopía de Fuerza Atómica/métodos , Propiedades de Superficie
15.
J Mech Behav Biomed Mater ; 140: 105729, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801780

RESUMEN

The true stress-true strain curves of 11 Australian spider species from the Entelegynae lineage were tensile tested and classified based on the values of the alignment parameter, α*, in the framework of the Spider Silk Standardization Initiative (S3I). The application of the S3I methodology allowed the determination of the alignment parameter in all cases, and were found to range between α* = 0.03 and α* = 0.65. These data, in combination with previous results on other species included in the Initiative, were exploited to illustrate the potential of this approach by testing two simple hypotheses on the distribution of the alignment parameter throughout the lineage: (1) whether a uniform distribution may be compatible with the values obtained from the studied species, and (2) whether any trend may be established between the distribution of the α* parameter and phylogeny. In this regard, the lowest values of the α* parameter are found in some representatives of the Araneidae group, and larger values seem to be found as the evolutionary distance from this group increases. However, a significant number of outliers to this apparent general trend in terms of the values of the α* parameter are described.


Asunto(s)
Seda , Arañas , Animales , Resistencia a la Tracción , Australia
16.
Polymers (Basel) ; 15(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299290

RESUMEN

Central nervous system (CNS) diseases represent an extreme burden with significant social and economic costs. A common link in most brain pathologies is the appearance of inflammatory components that can jeopardize the stability of the implanted biomaterials and the effectiveness of therapies. Different silk fibroin scaffolds have been used in applications related to CNS disorders. Although some studies have analyzed the degradability of silk fibroin in non-cerebral tissues (almost exclusively upon non-inflammatory conditions), the stability of silk hydrogel scaffolds in the inflammatory nervous system has not been studied in depth. In this study, the stability of silk fibroin hydrogels exposed to different neuroinflammatory contexts has been explored using an in vitro microglial cell culture and two in vivo pathological models of cerebral stroke and Alzheimer's disease. This biomaterial was relatively stable and did not show signs of extensive degradation across time after implantation and during two weeks of in vivo analysis. This finding contrasted with the rapid degradation observed under the same in vivo conditions for other natural materials such as collagen. Our results support the suitability of silk fibroin hydrogels for intracerebral applications and highlight the potentiality of this vehicle for the release of molecules and cells for acute and chronic treatments in cerebral pathologies.

17.
Biomater Adv ; 133: 112614, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35527152

RESUMEN

Titanium implants are widely used in traumatology and various orthopedic fields. Titanium and other metallic-based implants have limited structural and functional integration into the body, which translates into progressive prosthesis instability and the need for new surgical interventions that have enormous social and economic impacts. To enhance the biocompatibility of titanium implants, numerous biofunctionalization strategies have been developed. However, the problem persists, as more than 70% of implant failures are due to aseptic loosening. In this study we addressed the problem of improving the physiological engraftability and acceptability of titanium-based implants by applying a robust and versatile functionalization method based on the covalent immobilization of extracellular matrix (ECM)-derived oligopeptides on Ti-6Al-4V surfaces treated by activated vapor silanization (AVS). The feasibility of this technique was evaluated with two oligopeptides of different structures and compositions. These oligopeptides were immobilized on Ti-6Al-4V substrates by a combination of AVS and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The immobilization was shown to be stable and resistant to chemical denaturing upon sodium dodecyl sulfate treatment. On Ti-6Al-4V surfaces both peptides increased the attachment, spreading, rearrangement and directional growth of mesenchymal stem and progenitor cells (MSC) with chondro- and osteo-regenerative capacities. We also found that this biofunctionalization method (AVS-EDC/NHS) increased the attachment capacity of an immortalized cell line of neural origin with poor adhesive properties, highlighting the versatility and robustness of this method in terms of potential oligopeptides that may be used, and cell lineages whose anchorage to the biomaterial may be enhanced. Collectively, this novel functionalization strategy can accelerate the development of advanced peptide-functionalized metallic surfaces, which, in combination with host or exogenously implanted stem cells, have the potential to positively affect the osteoregenerative and osteointegrative abilities of metallic-based prostheses.


Asunto(s)
Matriz Extracelular , Titanio , Aleaciones , Adhesión Celular , Oligopéptidos/farmacología , Titanio/farmacología
18.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35740081

RESUMEN

Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen-glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.

19.
Front Cell Dev Biol ; 10: 741499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223826

RESUMEN

Obtaining oligodendroglial cells from dispensable tissues would be of great interest for autologous or immunocompatible cell replacement therapy in demyelinating diseases, as well as for studying myelin-related pathologies or testing therapeutic approaches in culture. We evaluated the feasibility of generating oligodendrocyte precursor cells (OPCs) from adult rat adipose tissue by expressing genes encoding transcription factors involved in oligodendroglial development. Adipose-derived mesenchymal cells were lentivirally transduced with tetracycline-inducible Sox10, Olig2, Zfp536, and/or Nkx6.1 transgenes. Immunostaining with the OPC-specific O4 monoclonal antibody was used to mark oligodendroglial induction. O4- and myelin-associated glycoprotein (MAG)-positive cells emerged after 3 weeks when using the Sox10 + Olig2 + Zfp536 combination, followed in the ensuing weeks by GFAP-, O1 antigen-, p75NTR (low-affinity NGF receptor)-, and myelin proteins-positive cells. The O4+ cell population progressively expanded, eventually constituting more than 70% of cells in culture by 5 months. Sox10 transgene expression was essential for generating O4+ cells but was insufficient for inducing a full oligodendroglial phenotype. Converted cells required continuous transgene expression to maintain their glial phenotype. Some vestigial characteristics of mesenchymal cells were maintained after conversion. Growth factor withdrawal and triiodothyronine (T3) supplementation generated mature oligodendroglial phenotypes, while FBS supplementation produced GFAP+- and p75NTR+-rich cultures. Converted cells also showed functional characteristics of neural-derived OPCs, such as the expression of AMPA, NMDA, kainate, and dopaminergic receptors, as well as similar metabolic responses to differentiation-inducing drugs. When co-cultured with rat dorsal root ganglion neurons, the converted cells differentiated and ensheathed multiple axons. We propose that functional oligodendroglia can be efficiently generated from adult rat mesenchymal cells by direct phenotypic conversion.

20.
Proc Natl Acad Sci U S A ; 105(44): 17169-74, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18957549

RESUMEN

Neurotransmission through electrical synapses plays an important role in the spike synchrony among neurons and oscillation of neuronal networks. Indeed, electrical transmission has been implicated in the hypersynchronous electrical activity of epilepsy. We have investigated the influence of intracellular pH on the strength of electrical coupling mediated by connexin36 (Cx36), the principal gap junction protein in the electrical synapses of vertebrates. In striking contrast to other connexin isoforms, the activity of Cx36 channels decreases following alkalosis rather than acidosis when it is expressed in Xenopus oocytes and N2A cells. This uncoupling of Cx36 channels upon alkalinization occurred in the vertebrate orthologues analyzed (human, mouse, chicken, perch, and skate). While intracellular acidification caused a mild or moderate increase in the junctional conductance of virtually all these channels, the coupling of the skate Cx35 channel was partially blocked by acidosis. The mutational analysis suggests that the Cx36 channels may contain two gating mechanisms operating with opposing sensitivity to pH. One gate, the dominant mechanism, closes for alkalosis and it probably involves an interaction between the C- and N-terminal domains, while a secondary acid sensing gate only causes minor, albeit saturating, changes in coupling following acidosis and alkalosis. Thus, we conclude that neuronal Cx36 channels undergo unique regulation by pH(i) since their activity is inhibited by alkalosis rather than acidosis. These data provide a novel basis to define the relevance and consequences of the pH-dependent modulation of Cx36 synapses under physiological and pathological conditions.


Asunto(s)
Conexinas/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , Conexinas/química , Conexinas/genética , Sinapsis Eléctricas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Ratones , Oocitos/metabolismo , Xenopus laevis , Proteína delta-6 de Union Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA