Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Behav Brain Funct ; 19(1): 8, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226219

RESUMEN

The lipid oleoylethanolamide (OEA) has been shown to affect reward-related behavior. However, there is limited experimental evidence about the specific neurotransmission systems OEA may be affecting to exert this modulatory effect. The aim of this study was to evaluate the effects of OEA on the rewarding properties of cocaine and relapse-related gene expression in the striatum and hippocampus. For this purpose, we evaluated male OF1 mice on a cocaine-induced CPP procedure (10 mg/kg) and after the corresponding extinction sessions, we tested drug-induced reinstatement. The effects of OEA (10 mg/kg, i.p.) were evaluated at three different timepoints: (1) Before each cocaine conditioning session (OEA-C), (2) Before extinction sessions (OEA-EXT) and (3) Before the reinstatement test (OEA-REINST). Furthermore, gene expression changes in dopamine receptor D1 gene, dopamine receptor D2 gene, opioid receptor µ, cannabinoid receptor 1, in the striatum and hippocampus were analyzed by qRT-PCR. The results obtained in the study showed that OEA administration did not affect cocaine CPP acquisition. However, mice receiving different OEA treatment schedules (OEA-C, OEA-EXT and OEA-REINST) failed to display drug-induced reinstatement. Interestingly, the administration of OEA blocked the increase of dopamine receptor gene D1 in the striatum and hippocampus caused by cocaine exposure. In addition, OEA-treated mice exhibited reduced striatal dopamine receptor gene D2 and cannabinoid receptor 1. Together, these findings suggest that OEA may be a promising pharmacological agent in the treatment of cocaine use disorder.


Asunto(s)
Cocaína , Neostriado , Masculino , Animales , Ratones , Cocaína/farmacología , Dopamina , Receptores de Cannabinoides , Expresión Génica
2.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067897

RESUMEN

Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Factores de Edad , Consumo de Bebidas Alcohólicas/inmunología , Consumo de Bebidas Alcohólicas/prevención & control , Animales , Animales no Consanguíneos , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Quimiocina CXCL1/metabolismo , Dieta Alta en Grasa , Etanol/farmacología , Inflamación/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Obesidad , Autoadministración/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37314479

RESUMEN

RATIONALE: Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS: Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS: Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS: In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36724838

RESUMEN

The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.


Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Receptor Toll-Like 4 , Recompensa , Ácidos Oléicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA