Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ann Hematol ; 101(9): 2053-2067, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780254

RESUMEN

Prior studies of antibody response after full SARS-CoV-2 vaccination in hematological patients have confirmed lower antibody levels compared to the general population. Serological response in hematological patients varies widely according to the disease type and its status, and the treatment given and its timing with respect to vaccination. Through probabilistic machine learning graphical models, we estimated the conditional probabilities of having detectable anti-SARS-CoV-2 antibodies at 3-6 weeks after SARS-CoV-2 vaccination in a large cohort of patients with several hematological diseases (n= 1166). Most patients received mRNA-based vaccines (97%), mainly Moderna® mRNA-1273 (74%) followed by Pfizer-BioNTech® BNT162b2 (23%). The overall antibody detection rate at 3 to 6 weeks after full vaccination for the entire cohort was 79%. Variables such as type of disease, timing of anti-CD20 monoclonal antibody therapy, age, corticosteroids therapy, vaccine type, disease status, or prior infection with SARS-CoV-2 are among the most relevant conditions influencing SARS-CoV-2-IgG-reactive antibody detection. A lower probability of having detectable antibodies was observed in patients with B-cell non-Hodgkin's lymphoma treated with anti-CD20 monoclonal antibodies within 6 months before vaccination (29.32%), whereas the highest probability was observed in younger patients with chronic myeloproliferative neoplasms (99.53%). The Moderna® mRNA-1273 compound provided higher probabilities of antibody detection in all scenarios. This study depicts conditional probabilities of having detectable antibodies in the whole cohort and in specific scenarios such as B cell NHL, CLL, MM, and cMPN that may impact humoral responses. These results could be useful to focus on additional preventive and/or monitoring interventions in these highly immunosuppressed hematological patients.


Asunto(s)
Antineoplásicos , COVID-19 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/diagnóstico , COVID-19/prevención & control , Vacunas contra la COVID-19 , Detección Precoz del Cáncer , Humanos , SARS-CoV-2 , Vacunación
2.
Transfusion ; 59(1): 340-346, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284302

RESUMEN

BACKGROUND: Extracorporeal photopheresis (ECP) is an effective treatment. However, protocols differ widely, and some questions, such as the number of cells to be collected or the number of ECP treatment days per treatment cycle, are still unsolved. The aim of this study was to compare a multistep (offline) (Spectra Optia and Macogenic G2) against an integrated (inline) ECP system (Therakos Cellex system) with respect to mononuclear cell (MNC) collection. STUDY DESIGN AND METHODS: The number and quality parameters of the MNC products collected were evaluated together with some machine parameters, such as collection time. Comparisons were made through paired sample analysis with the t test. RESULTS: Fourteen patients underwent 15 double-paired procedures using both ECP protocols. The average MNC collected in the multistep procedure was 77.4 × 108 , four times more than in the integrated procedure (18.5 × 108 ). MNC purity (84.4% vs. 63.8%) and enrichment (27.9 vs. 5.9) in the product collected were also higher in the multistep procedure. The whole ECP time was higher in the multistep than in the integrated procedure (272 vs. 106 min), but the calculated time to collect 25 × 108 MNCs in the multistep was shorter compared with the one-step procedure (77.8 vs. 172 min). All these differences between the two protocols were statistically significant. CONCLUSIONS: These two ECP protocols are different with respect to MNC collection and length of procedure. Some unresolved questions, such as the better MNC dose to inactivate or the number of consecutive days that ECP should be performed for optimal clinical efficacy, require further review.


Asunto(s)
Leucocitos Mononucleares/citología , Fotoféresis/métodos , Presión Sanguínea/fisiología , Bronquiolitis Obliterante/terapia , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Temperatura
3.
Blood Cancer J ; 13(1): 8, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599843

RESUMEN

The long-term clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has been little explored. A prospective multicenter registry-based cohort study conducted from December 2020 to July 2022 by the Spanish Transplant and Cell Therapy group, was used to analyze the relationship of antibody response over time after full vaccination (at 3-6 weeks, 3, 6 and 12 months) (2 doses) and of booster doses with breakthrough SARS-CoV-2 infection in 1551 patients with hematological disorders. At a median follow-up of 388 days after complete immunization, 266 out of 1551 (17%) developed breakthrough SARS-CoV-2 infection at median of 86 days (range 7-391) after full vaccination. The cumulative incidence was 18% [95% confidence interval (C.I.), 16-20%]. Multivariate analysis identified higher incidence in chronic lymphocytic leukemia patients (29%) and with the use of corticosteroids (24.5%), whereas female sex (15.5%) and more than 1 year after last therapy (14%) were associated with a lower incidence (p < 0.05 for all comparisons). Median antibody titers at different time points were significantly lower in breakthrough cases than in non-cases. A serological titer cut-off of 250 BAU/mL was predictive of breakthrough infection and its severity. SARS-CoV-2 infection-related mortality was encouragingly low (1.9%) in our series. Our study describes the incidence of and risk factors for COVID-19 breakthrough infections during the initial vaccination and booster doses in the 2021 to mid-2022 period. The level of antibody titers at any time after 2-dose vaccination is strongly linked with protection against both breakthrough infection and severe disease, even with the Omicron SARS-CoV-2 variant.


Asunto(s)
COVID-19 , Humanos , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Estudios de Cohortes , Estudios Prospectivos
4.
Viruses ; 15(10)2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37896843

RESUMEN

BACKGROUND: Scarce data exist that analyze the outcomes of hematological patients with SARS-CoV-2 infection during the Omicron variant period who received treatment with remdesivir or nirmatrelvir/ritonavir. METHODS: This study aims to address this issue by using a retrospective observational registry, created by the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group, spanning from 27 December 2021 to 30 April 2023. RESULTS: This study included 466 patients, 243 (52%) who were treated with remdesivir and 223 (48%) with nirmatrelvir/ritonavir. Nirmatrelvir/ritonavir was primarily used for mild cases, resulting in a lower COVID-19-related mortality rate (1.3%), while remdesivir was preferred for moderate to severe cases (40%), exhibiting a higher mortality rate (9%). A multivariate analysis in the remdesivir cohort showed that male gender (odds ratio (OR) 0.35, p = 0.042) correlated with a lower mortality risk, while corticosteroid use (OR 9.4, p < 0.001) and co-infection (OR 2.8, p = 0.047) were linked to a higher mortality risk. Prolonged virus shedding was common, with 52% of patients shedding the virus for more than 25 days. In patients treated with remdesivir, factors associated with prolonged shedding included B-cell malignancy as well as underlying disease, severe disease, a later onset of and shorter duration of remdesivir treatment and a higher baseline viral load. Nirmatrelvir/ritonavir demonstrated a comparable safety profile to remdesivir, despite a higher risk of drug interactions. CONCLUSIONS: Nirmatrelvir/ritonavir proved to be a safe and effective option for treating mild cases in the outpatient setting, while remdesivir was preferred for severe cases, where corticosteroids and co-infection significantly predicted worse outcomes. Despite antiviral therapy, prolonged shedding remains a matter of concern.


Asunto(s)
COVID-19 , Coinfección , Humanos , Masculino , Estudios Retrospectivos , Ritonavir/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/uso terapéutico
5.
Cancers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36900296

RESUMEN

Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February-June 2020; n = 769 (66%)) and later (July 2020-February 2021; n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11-0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77; 2.01-3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34; 0.22-0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12; 0.81-1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA