Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(25): 17211-17219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864331

RESUMEN

Gene therapy provides exciting new therapeutic opportunities beyond the reach of traditional treatments. Despite the tremendous progress of viral vectors, their high cost, complex manufacturing, and side effects have encouraged the development of nonviral alternatives, including cationic polymers. However, these are less efficient in overcoming cellular barriers, resulting in lower transfection efficiencies. Although the exquisite structural tunability of polymers might be envisaged as a versatile tool for improving transfection, the need to fine-tune several structural parameters represents a bottleneck in current screening technologies. By taking advantage of the fast-forming and strong boronate ester bond, an archetypal example of dynamic covalent chemistry, a highly adaptable gene delivery platform is presented, in which the polycation synthesis and pDNA complexation occur in situ. The robustness of the strategy entitles the simultaneous evaluation of several structural parameters at will, enabling the accelerated screening and adaptive optimization of lead polymeric vectors using dynamic covalent libraries.


Asunto(s)
Ácidos Borónicos , Polímeros , Ácidos Borónicos/química , Polímeros/química , Humanos , Técnicas de Transferencia de Gen , ADN/química , Vectores Genéticos/química , Estructura Molecular
2.
Genet Med ; 26(5): 101087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genética
3.
Biomacromolecules ; 25(1): 425-435, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064593

RESUMEN

Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.


Asunto(s)
Células Artificiales , Polímeros , Polímeros/química , Polielectrolitos , Cationes , Proteínas/química
4.
Biomacromolecules ; 25(5): 2780-2791, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613487

RESUMEN

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.


Asunto(s)
Alquinos , Azidas , Reacción de Cicloadición , Sistemas de Liberación de Medicamentos , Polietilenglicoles , Alquinos/química , Azidas/química , Química Clic/métodos , Dendrímeros/química , Dendrímeros/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Polietilenglicoles/química , Polímeros/química
5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255760

RESUMEN

Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.


Asunto(s)
Ibogaína , Femenino , Masculino , Animales , Ratones , Ratones Noqueados , Ibogaína/farmacología , Receptor de Serotonina 5-HT2A/genética , N-Metilaspartato , Serotonina , Ácido Glutámico , ARN Mensajero
6.
J Nat Prod ; 86(6): 1500-1511, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221656

RESUMEN

The iboga alkaloids scaffold shows great potential as a pharmacophore in drug candidates for the treatment of neuropsychiatric disorders. Thus, the study of the reactivity of this type of motif is particularly useful for the generation of new analogs suitable for medicinal chemistry goals. In this article, we analyzed the oxidation pattern of ibogaine and voacangine using dioxygen, peroxo compounds, and iodine as oxidizing agents. Special focus was placed on the study of the regio- and stereochemistry of the oxidation processes according to the oxidative agent and starting material. We found that the C16-carboxymethyl ester present in voacangine stabilizes the whole molecule toward oxidation in comparison to ibogaine, especially in the indole ring, where 7-hydroxy- or 7-peroxy-indolenines can be obtained as oxidation products. Nevertheless, the ester moiety enhances the reactivity of the isoquinuclidinic nitrogen to afford C3-oxidized products through a regioselective iminium formation. This differential reactivity between ibogaine and voacangine was rationalized using computational DFT calculations. In addition, using qualitative and quantitative NMR experiments combined with theoretical calculations, the absolute stereochemistry at C7 in the 7-hydroxyindolenine of voacangine was revised to be S, which corrects previous reports proposing an R configuration.


Asunto(s)
Ibogaína , Tabernaemontana , Ibogaína/farmacología , Ibogaína/química , Tabernaemontana/química , Oxidación-Reducción , Esqueleto
7.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686296

RESUMEN

Although alcohol consumption during pregnancy is a major cause of behavioral and learning disabilities, most FASD infants are late- or even misdiagnosed due to clinician's difficulties achieving early detection of alcohol-induced neurodevelopmental impairments. Neuroplacentology has emerged as a new field of research focusing on the role of the placenta in fetal brain development. Several studies have reported that prenatal alcohol exposure (PAE) dysregulates a functional placenta-cortex axis, which is involved in the control of angiogenesis and leads to neurovascular-related defects. However, these studies were focused on PlGF, a pro-angiogenic factor. The aim of the present study is to provide the first transcriptomic "placenta-cortex" signature of the effects of PAE on fetal angiogenesis. Whole mouse genome microarrays of paired placentas and cortices were performed to establish the transcriptomic inter-organ "placenta-cortex" signature in control and PAE groups at gestational day 20. Genespring comparison of the control and PAE signatures revealed that 895 and 1501 genes were only detected in one of two placenta-cortex expression profiles, respectively. Gene ontology analysis indicated that 107 of these genes were associated with vascular development, and String protein-protein interaction analysis showed that they were associated with three functional clusters. PANTHER functional classification analysis indicated that "intercellular communication" was a significantly enriched biological process, and 27 genes were encoded for neuroactive ligand/receptors interactors. Protein validation experiments involving Western blot for one ligand-receptor couple (Agt/AGTR1/2) confirmed the transcriptomic data, and Pearson statistical analysis of paired placentas and fetal cortices revealed a negative correlation between placental Atg and cortical AGTR1, which was significantly impacted by PAE. In humans, a comparison of a 38WG control placenta with a 36WG alcohol-exposed placenta revealed low Agt immunolabeling in the syncytiotrophoblast layer of the alcohol case. In conclusion, this study establishes the first transcriptomic placenta-cortex signature of a developing mouse. The data show that PAE markedly unbalances this inter-organ signature; in particular, several ligands and/or receptors involved in the control of angiogenesis. These data support that PAE modifies the existing communication between the two organs and opens new research avenues regarding the impact of placental dysfunction on the neurovascular development of fetuses. Such a signature would present a clinical value for early diagnosis of brain defects in FASD.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Embarazo , Lactante , Femenino , Humanos , Animales , Ratones , Transcriptoma , Trastornos del Espectro Alcohólico Fetal/genética , Ligandos , Placenta , Efectos Tardíos de la Exposición Prenatal/genética
8.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555591

RESUMEN

Cerebral palsy (CP) is defined as permanent disorders of movement and posture. Prematurity and hypoxia-ischemia (HI) are risk factors of CP, and boys display a greater vulnerability to develop CP. Magnesium sulfate (MgSO4) is administered to mothers at risk of preterm delivery as a neuroprotective agent. However, its effectiveness is only partial at long term. To prolong MgSO4 effects, it was combined with 4-phenylbutyrate (4-PBA). A mouse model of neonatal HI, generating lesions similar to those reported in preterms, was realized. At short term, at the behavioral and cellular levels, and in both sexes, the MgSO4/4-PBA association did not alter the total prevention induced by MgSO4 alone. At long term, the association extended the MgSO4 preventive effects on HI-induced motor and cognitive deficits. This might be sustained by the promotion of oligodendrocyte precursor differentiation after HI at short term, which led to improvement of white matter integrity at long term. Interestingly, at long term, at a behavioral level, sex-dependent responses to HI were observed. This might partly be explained by early sex-dependent pathological processes that occur after HI. Indeed, at short term, apoptosis through mitochondrial pathways seemed to be activated in females but not in males, and only the MgSO4/4-PBA association seemed to counter this apoptotic process.


Asunto(s)
Parálisis Cerebral , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Sustancia Blanca , Animales , Ratones , Masculino , Femenino , Parálisis Cerebral/tratamiento farmacológico , Parálisis Cerebral/patología , Sustancia Blanca/patología , Sulfato de Magnesio/farmacología , Sulfato de Magnesio/uso terapéutico , Fármacos Neuroprotectores/farmacología , Hipoxia-Isquemia Encefálica/patología , Animales Recién Nacidos
9.
Cell Mol Life Sci ; 77(10): 1959-1986, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31392351

RESUMEN

During cortex development, fine interactions between pyramidal cells and migrating GABA neurons are required to orchestrate correct positioning of interneurons, but cellular and molecular mechanisms are not yet clearly understood. Functional and age-specific expression of NMDA receptors by neonate endothelial cells suggests a vascular contribution to the trophic role of glutamate during cortical development. Associating functional and loss-of-function approaches, we found that glutamate stimulates activity of the endothelial proteases MMP-9 and t-PA along the pial migratory route (PMR) and radial cortical microvessels. Activation of MMP-9 was NMDAR-dependent and abrogated in t-PA-/- mice. Time-lapse recordings revealed that glutamate stimulated migration of GABA interneurons along vessels through an NMDAR-dependent mechanism. In Gad67-GFP mice, t-PA invalidation and in vivo administration of an MMP inhibitor impaired positioning of GABA interneurons in superficial cortical layers, whereas Grin1 endothelial invalidation resulted in a strong reduction of the thickness of the pial migratory route, a marked decrease of the glutamate-induced MMP-9-like activity along the PMR and a depopulation of interneurons in superficial cortical layers. This study supports that glutamate controls the vessel-associated migration of GABA interneurons by regulating the activity of endothelial proteases. This effect requires endothelial NMDAR and is t-PA-dependent. These neurodevelopmental data reinforce the debate regarding safety of molecules with NMDA-antagonist properties administered to preterm and term neonates.


Asunto(s)
Ácido Glutámico/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Receptores de N-Metil-D-Aspartato/genética , Corteza Somatosensorial/metabolismo , Activador de Tejido Plasminógeno/genética , Animales , Animales Recién Nacidos , Vasos Sanguíneos/metabolismo , Mapeo Encefálico , Movimiento Celular/genética , Células Endoteliales/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Ácido Glutámico/genética , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Ratones , Ratones Transgénicos , Neurogénesis/genética , Corteza Somatosensorial/irrigación sanguínea , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
10.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923910

RESUMEN

MgSO4 is widely used in the prevention of preterm neurological disabilities but its modes of action remain poorly established. We used a co-hybridization approach using the transcriptome in 5-day old mice treated with a single dose of MgSO4 (600 mg/kg), and/or exposed to hypoxia-ischemia (HI). The transcription of hundreds of genes was altered in all the groups. MgSO4 mainly produced repressions culminating 6 h after injection. Bio-statistical analysis revealed the repression of synaptogenesis and axonal development. The putative targets of MgSO4 were Mnk1 and Frm1. A behavioral study of adults did not detect lasting effects of neonatal MgSO4 and precluded NMDA-receptor-mediated side effects. The effects of MgSO4 plus HI exceeded the sum of the effects of separate treatments. MgSO4 prior to HI reduced inflammation and the innate immune response probably as a result of cytokine inhibition (Ccl2, Ifng, interleukins). Conversely, MgSO4 had little effect on HI-induced transcription by RNA-polymerase II. De novo MgSO4-HI affected mitochondrial function through the repression of genes of oxidative phosphorylation and many NAD-dehydrogenases. It also likely reduced protein translation by the repression of many ribosomal proteins, essentially located in synapses. All these effects appeared under the putative regulatory MgSO4 induction of the mTORC2 Rictor coding gene. Lasting effects through Sirt1 and Frm1 could account for this epigenetic footprint.


Asunto(s)
Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Sulfato de Magnesio/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Femenino , Hipoxia-Isquemia Encefálica/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Sirtuina 1/genética , Sirtuina 1/metabolismo
11.
Neurobiol Dis ; 145: 105074, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890773

RESUMEN

In utero alcohol exposure can induce severe neurodevelopmental disabilities leading to long-term behavioral deficits. Because alcohol induces brain defects, many studies have focused on nervous cells. However, recent reports have shown that alcohol markedly affects cortical angiogenesis in both animal models and infants with fetal alcohol spectrum disorder (FASD). In addition, the vascular system is known to contribute to controlling gamma-aminobutyric acid (GABA)ergic interneuron migration in the developing neocortex. Thus, alcohol-induced vascular dysfunction may contribute to the neurodevelopmental defects in FASD. The present study aimed at investigating the effects of alcohol on endothelial activity of pial microvessels. Ex vivo experiments on cortical slices from mouse neonates revealed that in endothelial cells from pial microvessels acute alcohol exposure inhibits both glutamate-induced calcium mobilization and activities of matrix metalloproteinase-9 (MMP-9) and tissue plasminogen activator (tPA). The inhibitory effect of alcohol on glutamate-induced MMP-9 activity was abrogated in tPA-knockout and Grin1flox/VeCadcre mice suggesting that alcohol interacts through the endothelial NMDAR/tPA/MMP-9 vascular pathway. Contrasting with the effects from acute alcohol exposure, in mouse neonates exposed to alcohol in utero during the last gestational week, glutamate exacerbated both calcium mobilization and endothelial protease activities from pial microvessels. This alcohol-induced vascular dysfunction was associated with strong overexpression of the N-methyl-d-aspartate receptor subunit GluN1 and mispositioning of the Gad67-GFP interneurons that normally populate the superficial cortical layers. By comparing several human control fetuses with a fetus chronically exposed to alcohol revealed that alcohol exposure led to mispositioning of the calretinin-positive interneurons, whose density was decreased in the superficial cortical layers II-III and increased in deepest layers. This study provides the first mechanistic and functional evidence that alcohol impairs glutamate-regulated activity of pial microvessels. Endothelial dysfunction is characterized by altered metalloproteinase activity and interneuron mispositioning, which was also observed in a fetus with fetal alcohol syndrome. These data suggest that alcohol-induced endothelial dysfunction may contribute in ectopic cortical GABAergic interneurons, that has previously been described in infants with FASD.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/enzimología , Trastornos del Espectro Alcohólico Fetal/patología , Interneuronas/patología , Neurogénesis/efectos de los fármacos , Piamadre/efectos de los fármacos , Animales , Depresores del Sistema Nervioso Central/toxicidad , Células Endoteliales/enzimología , Etanol/toxicidad , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/patología , Humanos , Interneuronas/efectos de los fármacos , Metaloproteasas/metabolismo , Ratones , Piamadre/enzimología , Embarazo , Efectos Tardíos de la Exposición Prenatal
12.
Eur J Neurosci ; 52(1): 2560-2574, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31885096

RESUMEN

Preterm birth is a high-risk factor for the development of gray and white matter abnormalities, referred to as "encephalopathy of prematurity," that may lead to life-long motor, cognitive, and behavioral impairments. The prevalence and clinical outcomes of encephalopathy of prematurity differ between sexes, and elucidating the underlying biological basis has become a high-priority challenge. Human studies are often limited to assessment of brain region volumes by MRI, which does not provide much information about the underlying mechanisms of lesions related to very preterm birth. However, models using KO mice or pharmacological manipulations in rodents allow relevant observations to help clarify the mechanisms of injury sustaining sex-differential vulnerability. This review focuses on data obtained from mice aged P1-P5 or rats aged P3 when submitted to cerebral damage such as hypoxia-ischemia, as their brain lesions share similarities with lesion patterns occurring in very preterm human brain, before 32 gestational weeks. We first report data on the mechanisms underlying the development of sexual brain dimorphism in rodent, focusing on the hippocampus. In the second part, we describe sex specificities of rodent models of encephalopathy of prematurity (RMEP), focusing on mechanisms underlying differences in hippocampal vulnerability. Finally, we discuss the relevance of these RMEP. Together, this review highlights the need to systematically search for potential effects of sex when studying the mechanisms underlying deficits in RMEP in order to design effective sex-specific medical interventions in human preterms.


Asunto(s)
Hipoxia-Isquemia Encefálica , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Encéfalo , Femenino , Ratones , Embarazo , Ratas , Roedores
13.
Neurobiol Dis ; 120: 151-164, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30201311

RESUMEN

Cerebral lesions acquired in the perinatal period can induce cerebral palsy (CP), a multifactorial pathology leading to lifelong motor and cognitive deficits. Several risk factors, including perinatal hypoxia-ischemia (HI), can contribute to the emergence of CP in preterm infants. Currently, there is no international consensus on treatment strategies to reduce the risk of developing CP. A meta-analysis showed that magnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery reduces the risk of developing CP (Crowther et al., 2017). However, only a few studies have investigated the long-term effects of MgSO4 and it is not known whether sex would influence MgSO4 efficacy. In addition, the search for potential deleterious effects is essential to enable broad use of MgSO4 in maternity wards. We used a mouse model of perinatal HI to study MgSO4 effects until adolescence, focusing on cognitive and motor functions, and on some apoptosis and inflammation markers. Perinatal HI at postnatal day 5 (P(5)) induced (1) sensorimotor deficits in pups; (2) increase in caspase-3 activity 24 h after injury; (3) production of proinflammatory cytokines from 6 h to 5 days after injury; (4) behavioral and histological alterations in adolescent mice with considerable interindividual variability. MgSO4 prevented sensorimotor alterations in pups, with the same efficacy in males and females. MgSO4 displayed anti-apoptotic and anti-inflammatory effects without deleterious side effects. Perinatal HI led to motor coordination impairments in female adolescent mice and cognitive deficits in both sexes. MgSO4 tended to prevent these motor and cognitive deficits only in females, while it prevented global brain tissue damage in both sexes. Moreover, interindividual and intersexual differences appeared regarding the lesion size and neuroprotection by MgSO4 in a region-specific manner. These differences, the partial prevention of disorders, as well as the mismatch between histological and behavioral observations mimic clinical observations. This underlines that this perinatal HI model is suitable to further analyze the mechanisms of sex-dependent perinatal lesion susceptibility and MgSO4 efficacy.


Asunto(s)
Lesiones Encefálicas/prevención & control , Parálisis Cerebral/prevención & control , Modelos Animales de Enfermedad , Sulfato de Magnesio/uso terapéutico , Reflejo de Enderezamiento/efectos de los fármacos , Caracteres Sexuales , Animales , Animales Recién Nacidos , Anticonvulsivantes/uso terapéutico , Lesiones Encefálicas/patología , Lesiones Encefálicas/psicología , Parálisis Cerebral/patología , Parálisis Cerebral/psicología , Femenino , Sulfato de Magnesio/farmacología , Masculino , Ratones , Reflejo de Enderezamiento/fisiología , Factores Sexuales , Factores de Tiempo , Resultado del Tratamiento
14.
J Transl Med ; 16(1): 248, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180851

RESUMEN

BACKGROUND: Metabolomics represent a valuable tool to recover biological information using body fluids and may help to characterize pathophysiological mechanisms of the studied disease. This approach has not been widely used to explore inherited metabolic diseases. This study investigates mucopolysaccharidosis type III (MPS III). A thorough and holistic understanding of metabolic remodeling in MPS III may allow the development, improvement and personalization of patient care. METHODS: We applied both targeted and untargeted metabolomics to urine samples obtained from a French cohort of 49 patients, consisting of 13 MPS IIIA, 16 MPS IIIB, 13 MPS IIIC, and 7 MPS IIID, along with 66 controls. The analytical strategy is based on ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Twenty-four amino acids have been assessed using tandem mass spectrometry combined with liquid chromatography. Multivariate data modeling has been used for discriminant metabolite selection. Pathway analysis has been performed to retrieve metabolic pathways impairments. RESULTS: Data analysis revealed distinct biochemical profiles. These metabolic patterns, particularly those related to the amino acid metabolisms, allowed the different studied groups to be distinguished. Pathway analysis unveiled major amino acid pathways impairments in MPS III mainly arginine-proline metabolism and urea cycle metabolism. CONCLUSION: This represents one of the first metabolomics-based investigations of MPS III. These results may shed light on MPS III pathophysiology and could help to set more targeted studies to infer the biomarkers of the affected pathways, which is crucial for rare conditions such as MPS III.


Asunto(s)
Aminoácidos/orina , Metabolómica/métodos , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/orina , Urinálisis/métodos , Adolescente , Adulto , Anciano , Algoritmos , Biomarcadores/metabolismo , Niño , Preescolar , Cromatografía Liquida , Análisis por Conglomerados , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Análisis Multivariante , Curva ROC , Espectrometría de Masas en Tándem , Adulto Joven
15.
Anesth Analg ; 118(5): 1041-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24781573

RESUMEN

BACKGROUND: The use of remifentanil in a context of potential prematurity led us to explore ex vivo the opioid effects on the immature mouse brain. Remifentanil enhances medullary glutamatergic N-methyl-D-aspartate (NMDA) receptor activity. Furthermore, in neonatal mouse cortex, NMDA was previously shown to exert either excitotoxic or antiapoptotic effects depending on the cortical layers. With the use of a model of acute cultured brain slices, we evaluated the potential necrotic and apoptotic effects of remifentanil, alone or associated with its glycine vehicle (commercial preparation of remifentanil, C.P. remifentanil), on the immature brain. METHODS: Cerebral slices from postnatal day 2 mice were treated up to 5 hours with the different compounds, incubated alone or in the presence of NMDA. The necrotic effect was studied by measuring lactate dehydrogenase activity and 7-Aminoactinomycin D labeling. Apoptotic death was evaluated by measurement of caspase-3 activity and cleaved caspase-3 protein levels, using Western blot and immunohistochemistry. Extrinsic and intrinsic apoptotic pathways were investigated by measuring caspase-8, caspase-9 activities, Bax protein levels, and mitochondrial integrity. RESULTS: C.P. remifentanil was ineffective on necrotic death, whereas it significantly reduced caspase-3 activity and cortical cleaved caspase-3 levels. C.P. remifentanil inhibited cortical Bax protein expression, caspase-9 activity, and preserved mitochondrial integrity, whereas it had no effect on caspase-8 activity. Its action targeted the neocortex superficial layers, and it was reversed by the opioid receptors antagonist naloxone and the NMDA antagonist MK801. Remifentanil and glycine acted synergistically to inhibit apoptotic death. In addition, C.P. remifentanil enhanced the antiapoptotic effect of NMDA, whereas it did not improve NMDA excitotoxicity in brain slices. CONCLUSION: The present data indicate that at a supraclinical concentration C.P. remifentanil had no pronecrotic effect but exerted ex vivo antiapoptotic action on the immature mouse brain, involving the opioid and NMDA receptors, and the mitochondrial-dependent apoptotic pathway. Assessment of the impact of the antiapoptotic effect of remifentanil in in vivo neonatal mouse models of brain injury will also be essential to measure its consequences on the developing brain.


Asunto(s)
Analgésicos Opioides/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Piperidinas/farmacología , Analgésicos Opioides/farmacocinética , Animales , Animales Recién Nacidos , Western Blotting , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Sinergismo Farmacológico , Glicina/farmacología , Semivida , Inmunohistoquímica , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Ratones , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Piperidinas/farmacocinética , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Remifentanilo , Proteína X Asociada a bcl-2/metabolismo
16.
Psychopharmacology (Berl) ; 241(7): 1417-1426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38467891

RESUMEN

Ibogaine is a potent atypical psychedelic that has gained considerable attention due to its antiaddictive and antidepressant properties in preclinical and clinical studies. Previous research from our group showed that ibogaine suppresses sleep and produces an altered wakefulness state, which resembles natural REM sleep. However, after systemic administration, ibogaine is rapidly metabolized to noribogaine, which also shows antiaddictive effects but with a distinct pharmacological profile, making this drug a promising therapeutic candidate. Therefore, we still ignore whether the sleep/wake alterations depend on ibogaine or its principal metabolite noribogaine. To answer this question, we conducted polysomnographic recordings in rats following the administration of pure noribogaine. Our results show that noribogaine promotes wakefulness while reducing slow-wave sleep and blocking REM sleep, similar to our previous results reported for ibogaine administration. Thus, we shed new evidence on the mechanisms by which iboga alkaloids work in the brain.


Asunto(s)
Ibogaína , Polisomnografía , Sueño REM , Vigilia , Animales , Sueño REM/efectos de los fármacos , Vigilia/efectos de los fármacos , Vigilia/fisiología , Masculino , Ratas , Ibogaína/análogos & derivados , Ibogaína/farmacología , Ibogaína/administración & dosificación , Ratas Sprague-Dawley , Sueño de Onda Lenta/efectos de los fármacos , Sueño de Onda Lenta/fisiología , Alucinógenos/farmacología , Alucinógenos/administración & dosificación , Electroencefalografía/efectos de los fármacos
17.
Neurobiol Dis ; 50: 201-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23103420

RESUMEN

Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 µM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only impact vascular integrity but may also influence neuronal fate, via regulation of apoptosis in immature cells and, as in adult by potentiating glutamate toxicity in mature neurons. The data point out putative implication of microvessels in glutamate neurotoxicity in the development, and justify research towards vessel oriented neuroprotection strategies in neonates.


Asunto(s)
Apoptosis/fisiología , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/patología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Técnicas de Cultivo de Órganos
18.
Ann Neurol ; 72(6): 952-60, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23280843

RESUMEN

OBJECTIVE: In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. METHODS: We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. RESULTS: In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. INTERPRETATION: Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities.


Asunto(s)
Depresores del Sistema Nervioso Central/efectos adversos , Corteza Cerebral/patología , Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/patología , Microvasos/crecimiento & desarrollo , Microvasos/patología , Efectos Tardíos de la Exposición Prenatal/patología , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos CD13/metabolismo , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Feto , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ácido Glutámico/farmacología , Humanos , Técnicas In Vitro , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Microscopía por Video , Microvasos/metabolismo , Fuerza Muscular/fisiología , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Brain Sci ; 13(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190507

RESUMEN

Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.

20.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068950

RESUMEN

In addition to brain disorders, which constitute a devastating consequence of prenatal alcohol exposure (PAE), eye development is also significantly affected. Given that the retina is a readily accessible part of the central nervous system, a better understanding of the impact of ethanol on retinal development might provide ophthalmological landmarks helpful for early diagnosis of fetal alcohol syndrome. This study aimed to provide a fine morphometric and cellular characterization of the development of retinal microvasculature and neurovascular interactions in a mouse model of fetal alcohol spectrum disorder (FASD). The data revealed that PAE impaired superficial vascular plexus development. In particular, progression of the vascular migration front was significantly decreased in PAE retinas, supporting a delay in plexus progression. Moreover, a significant decrease in the vessel density and number of perforating vessels was quantified in PAE mice, supporting less angiogenesis. The present study provides also the first evidence of a close interaction between migrating calretinin-positive interneurons and perforating microvessels in the inner nuclear layer of the developing retina. This neurovascular association was significantly impaired by PAE. Moreover, projections of amacrine cells were abnormally distributed and densified in stratum S1 and S2. In humans, comparison of a five-month-old control infant with a three-month-old alcohol-exposed case revealed a similar mispositioning of calretinin-positive interneurons. This opens new research avenues regarding a neurovascular contribution in the deleterious effects of alcohol in the developing retina and support that ophthalmological examination could become a promising approach for early detection of alcohol-exposed infants presenting with neurovascular brain defects.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Lactante , Ratones , Embarazo , Calbindina 2 , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Interneuronas , Microvasos , Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA