Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
New Phytol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970467

RESUMEN

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.

2.
New Phytol ; 241(5): 2039-2058, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191763

RESUMEN

Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC-1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)-pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc-1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc-deficient plants coordinate their metabolism and energy availability by reducing TOR-pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocromos c/genética , Citocromos c/metabolismo , Sirolimus/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Adenosina Trifosfato/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Plant J ; 110(3): 748-763, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132717

RESUMEN

After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982512

RESUMEN

TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Estrés Fisiológico , Proteínas de Arabidopsis/genética
5.
New Phytol ; 235(5): 1780-1795, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35637555

RESUMEN

During germination, seed reserves are mobilised to sustain the metabolic and energetic demands of plant growth. Mitochondrial respiration is presumably required to drive germination in several species, but only recently its role in this process has begun to be elucidated. Using Arabidopsis thaliana lines with changes in the levels of the respiratory chain component cytochrome c (CYTc), we investigated the role of this protein in germination and its relationship with hormonal pathways. Cytochrome c deficiency causes delayed seed germination, which correlates with decreased cyanide-sensitive respiration and ATP production at the onset of germination. In addition, CYTc affects the sensitivity of germination to abscisic acid (ABA), which negatively regulates the expression of CYTC-2, one of two CYTc-encoding genes in Arabidopsis. CYTC-2 acts downstream of the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), which binds to a region of the CYTC-2 promoter required for repression by ABA and regulates its expression. The results show that CYTc is a main player during seed germination through its role in respiratory metabolism and energy production. In addition, the direct regulation of CYTC-2 by ABI4 and its effect on ABA-responsive germination establishes a link between mitochondrial and hormonal functions during this process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Mitocondrias/metabolismo , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant J ; 103(2): 690-704, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32248588

RESUMEN

Mutations in SURFEIT1 (SURF1) genes affect cytochrome c oxidase (COX) levels in different prokaryotic and eukaryotic organisms. In this work, we report that Arabidopsis thaliana has two genes that potentially encode SURF1 proteins, as a result of a duplication that took place in Brassicaceae. Both genes encode mitochondrial proteins and mutation in AtSURF1a causes embryonic lethality. Mutation in AtSURF1b, instead, causes defects in hypocotyl elongation under growth-stimulating conditions, such as low light intensity, increased ambient temperature and incubation with glucose. Mutants in AtSURF1b show reduced expression of the auxin reporter DR5:GUS and increased levels of the gibberellin reporter GFP-RGA, suggesting that auxin and gibberellin homeostasis are affected. In agreement, growth defects caused by AtSURF1b mutation can be overcome by treatment with indole-3-acetic acid and gibberellin A3 , and also by increasing expression of the auxin biosynthesis gene YUC8 or the transcription factor PIF4, which shows lower abundance in AtSURF1b-deficient plants. Mutants in AtSURF1b display lower COX levels, higher alternative oxidase and superoxide levels, and increased expression of genes that respond to mitochondrial dysfunction. Decreased hypocotyl growth and DR5:GUS expression can be reversed by treatment with reduced glutathione, suggesting that redox changes, probably related to mitochondrial dysfunction, are responsible for the effect of AtSURF1b deficiency on hormone responses. The results indicate that changes in AtSURF1b affect mitochondrial function and the production of reactive oxygen species, which, in turn, impinges on a growth regulatory circuit that involves auxin, gibberellins and the transcription factor PIF4.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/genética , Proteínas de la Membrana/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Reguladores del Crecimiento de las Plantas/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Duplicación de Gen/genética , Genes de Plantas/fisiología , Proteínas de la Membrana/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Reguladores del Crecimiento de las Plantas/genética , Semillas/crecimiento & desarrollo
7.
Plant Mol Biol ; 105(1-2): 147-159, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32935297

RESUMEN

KEY MESSAGE: Two class I TCP transcription factors are required for an efficient elongation of hypocotyls in response to auxin and for the correct expression of a subset of auxin-inducible genes In this work, we analyzed the response to auxin of plants with altered function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15. Several SMALL AUXIN UP RNA (SAUR) genes showed decreased expression in mutant plants defective in these TCPs after an increase in ambient temperature to 29 °C, a condition that causes an increase in endogenous auxin levels. Overexpression of SAUR63 caused a more pronounced elongation response in the mutant than in the wild-type at 29 °C, suggesting that the decreased expression of SAUR genes is partly responsible for the defective elongation at warm temperature. Notably, several SAUR genes and the auxin response gene IAA19 also showed reduced expression in the mutant after auxin treatment, while the expression of other SAUR genes and of IAA29 was not affected or was even higher. Expression of the auxin reporter DR5::GUS was also higher in a tcp15 mutant than in a wild-type background after auxin treatment. However, the elongation of hypocotyls in response to auxin was impaired in the mutant. Remarkably, a significant proportion of auxin inducible genes and of targets of the AUXIN RESPONSE FACTOR 6 are regulated by TCP15 and often contain putative TCP recognition motifs in their promoters. Furthermore, we demonstrated that several among them are recognized by TCP15 in vivo. Our results indicate that TCP14 and TCP15 are required for an efficient elongation response to auxin, most likely by regulating a subset of auxin inducible genes related to cell expansion.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Calor , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo
8.
New Phytol ; 232(2): 494-501, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255867

RESUMEN

Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.


Asunto(s)
Plantas , Transducción de Señal , Animales , Mitocondrias/metabolismo , Oxidación-Reducción , Desarrollo de la Planta , Especies Reactivas de Oxígeno/metabolismo
9.
Plant Physiol ; 182(4): 2096-2110, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988200

RESUMEN

In autogamous plants like Arabidopsis (Arabidopsis thaliana), stamen filament elongation must be finely regulated to ensure that anthers reach the pistil at the correct developmental stage. In this work, we studied the roles of Arabidopsis TEOSINTE BRANCHED1, CYCLOIDEA, PCF15 (TCP15), and related class-I TCP transcription factors in stamen filament elongation. Plants with decreased expression of class-I TCPs and plants that express a fusion of TCP15 to a repressor domain (pTCP15::TCP15-EAR) had shorter stamens, indicating that class-I TCPs stimulate filament growth. These plants also showed reduced expression of several SMALL AUXIN UP RNA (SAUR)63 subfamily genes, which contain TCP target motifs in their promoters. Mutational analysis indicated that the TCP target motif in the SAUR63 promoter is required for expression of SAUR63 in stamen filaments. Moreover, TCP15 directly binds to the SAUR63 promoter region that contains the TCP target motif in vivo, highlighting the role of the TCPs in this process. Class-I TCPs are also required for the induction of SAUR63 subfamily genes by gibberellins (GAs). In addition, overexpression of SAUR63 restores filament growth in pTCP15::TCP15-EAR plants, whereas overexpression of TCP15 rescues the short stamen phenotype of GA-deficient plants. The results indicate that TCP15 and related class-I TCPs modulate GA-dependent stamen filament elongation by direct activation of SAUR63 subfamily genes through conserved target sites in their promoters. This work provides insight into GA-dependent stamen filament elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Giberelinas/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
10.
J Exp Bot ; 72(11): 4102-4118, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33369668

RESUMEN

Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.


Asunto(s)
Fenómenos Biológicos , Mitocondrias , Desarrollo de la Planta , Plantas , Transducción de Señal
11.
J Exp Bot ; 71(18): 5438-5453, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32453824

RESUMEN

Trichomes and the cuticle are two specialized structures of the aerial epidermis that are important for plant organ development and interaction with the environment. In this study, we report that Arabidopsis thaliana plants affected in the function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 show overbranched trichomes in leaves and stems and increased cuticle permeability. We found that TCP15 regulates the expression of MYB106, a MIXTA-like transcription factor involved in epidermal cell and cuticle development, and overexpression of MYB106 in a tcp14 tcp15 mutant reduces trichome branch number. TCP14 and TCP15 are also required for the expression of the cuticle biosynthesis genes CYP86A4, GPAT6, and CUS2, and of SHN1 and SHN2, two AP2/EREBP transcription factors required for cutin and wax biosynthesis. SHN1 and CUS2 are also targets of TCP15, indicating that class I TCPs influence cuticle formation acting at different levels, through the regulation of MIXTA-like and SHN transcription factors and of cuticle biosynthesis genes. Our study indicates that class I TCPs are coordinators of the regulatory network involved in trichome and cuticle development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/metabolismo
12.
Plant J ; 94(1): 105-121, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385297

RESUMEN

We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Citocromos c/metabolismo , Giberelinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocromos c/deficiencia , Citocromos c/fisiología , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Giberelinas/fisiología , Glucosa/metabolismo , Homeostasis , Mitocondrias/metabolismo , Almidón/metabolismo
13.
Plant Mol Biol ; 99(6): 621-638, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30778722

RESUMEN

KEY MESSAGE: The mitochondrial metallochaperone COX19 influences iron and copper responses highlighting a role of mitochondria in modulating metal homeostasis in Arabidopsis. The mitochondrial copper chaperone COX19 participates in the biogenesis of cytochrome c oxidase (COX) in yeast and humans. In this work, we studied the function of COX19 in Arabidopsis thaliana, using plants with either decreased or increased COX19 levels. A fusion of COX19 to the red fluorescent protein localized to mitochondria in vivo, suggesting that Arabidopsis COX19 is a mitochondrial protein. Silencing of COX19 using an artificial miRNA did not cause changes in COX activity levels or respiration in plants grown under standard conditions. These amiCOX19 plants, however, showed decreased expression of the low-copper responsive miRNA gene MIR398b and an induction of the miR398 target CSD1 relative to wild-type plants. Plants with increased COX19 levels, instead, showed induction of MIR398b and other low-copper responsive genes. In addition, global transcriptional changes in rosettes of amiCOX19 plants resembled those observed under iron deficiency. Phenotypic analysis indicated that the roots of amiCOX19 plants show altered growth responses to copper excess and iron deficiency. COX activity levels and COX-dependent respiration were lower in amiCOX19 plants than in wild-type plants under iron deficiency conditions, suggesting that COX19 function is particularly important for COX assembly under iron deficiency. The results indicate that the mitochondrial copper chaperone COX19 has a role in regulating copper and iron homeostasis and responses in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cobre/metabolismo , Homeostasis , Hierro/metabolismo , Metalochaperonas/metabolismo , Mitocondrias/metabolismo , Arabidopsis/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Plant Cell Physiol ; 60(12): 2769-2784, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31418792

RESUMEN

SCO (synthesis of cytochrome c oxidase) proteins are involved in the insertion of copper during the assembly of cytochrome c oxidase (COX), the final enzyme of the mitochondrial respiratory chain. Two SCO proteins, namely, homolog of copper chaperone 1 and 2 (HCC1 and HCC2) are present in seed plants, but HCC2 lacks the residues involved in copper binding, leading to uncertainties about its function. In this study, we performed a transcriptomic and phenotypic analysis of Arabidopsis thaliana plants with reduced expression of HCC1 or HCC2. We observed that a deficiency in HCC1 causes a decrease in the expression of several stress-responsive genes, both under basal growth conditions and after applying a short-term high salinity treatment. In addition, HCC1 deficient plants show a faster decrease in chlorophyll content, photosystem II quantum efficiency and COX levels after salinity stress, as well as a faster increase in alternative oxidase capacity. Notably, HCC2 deficiency causes opposite changes in most of these parameters. Bimolecular fluorescence complementation analysis indicated that both proteins are able to interact. We postulate that HCC1 is a limiting factor for COX assembly during high salinity conditions and that HCC2 probably acts as a negative modulator of HCC1 activity through protein-protein interactions. In addition, a direct or indirect role of HCC1 and HCC2 in the gene expression response to stress is proposed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Salino/genética , Estrés Salino/fisiología
15.
Plant Cell Physiol ; 60(8): 1633-1645, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31292642

RESUMEN

Plants respond to a rise in ambient temperature by increasing the growth of petioles and hypocotyls. In this work, we show that Arabidopsis thaliana class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 are required for optimal petiole and hypocotyl elongation under high ambient temperature. These TCPs influence the levels of the DELLA protein RGA and the expression of growth-related genes, which are induced in response to an increase in temperature. However, the class I TCPs are not required for the induction of the auxin biosynthesis gene YUCCA8 or for auxin-dependent gene expression responses. TCP15 directly targets the gibberellin biosynthesis gene GA20ox1 and the growth regulatory genes HBI1 and PRE6. Several of the genes regulated by TCP15 are also targets of the growth regulator PIF4 and show an enrichment of PIF4- and TCP-binding motifs in their promoters. PIF4 binding to GA20ox1 and HBI1 is enhanced in the presence of the TCPs, indicating that TCP14 and TCP15 directly participate in the induction of genes involved in gibberellin biosynthesis and cell expansion by high temperature functionally interacting with PIF4. In addition, overexpression of HBI1 rescues the growth defects of tcp14 tcp15 double mutants, suggesting that this gene is a major outcome of regulation by both class I TCPs during thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Giberelinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Exp Bot ; 70(12): 3177-3195, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30945737

RESUMEN

This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/genética , Estrés Oxidativo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomasa , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29495437

RESUMEN

Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Plantas/metabolismo , Animales , Dominio Catalítico , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/genética , Mutación , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Subunidades de Proteína , Levaduras/genética , Levaduras/metabolismo
19.
Plant Physiol ; 170(1): 74-85, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26574599

RESUMEN

TCP proteins integrate a family of transcription factors involved in the regulation of developmental processes and hormone responses. It has been shown that most members of class I, one of the two classes in which the TCP family is divided, contain a conserved Cys that leads to inhibition of DNA binding when oxidized. In this work, we describe that the class-I TCP protein TCP15 inhibits anthocyanin accumulation during exposure of plants to high light intensity by modulating the expression of transcription factors involved in the induction of anthocyanin biosynthesis genes, as suggested by the study of plants that express TCP15 from the 35SCaMV promoter and mutants in TCP15 and the related gene TCP14. In addition, the effect of TCP15 on anthocyanin accumulation is lost after prolonged incubation under high light intensity conditions. We provide evidence that this is due to inactivation of TCP15 by oxidation of Cys-20 of the TCP domain. Thus, redox modulation of TCP15 activity in vivo by high light intensity may serve to adjust anthocyanin accumulation to the duration of exposure to high irradiation conditions.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Oxidación-Reducción , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Factores de Transcripción/genética
20.
Plant Physiol ; 172(2): 901-912, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27506242

RESUMEN

Glycolysis generates methylglyoxal (MGO) as an unavoidable, cytotoxic by-product in plant cells. MGO scavenging is performed by the glyoxalase system, which produces d-lactate as an end product. d-Lactate dehydrogenase (d-LDH) is encoded by a single gene in Arabidopsis (Arabidopsis thaliana; At5g06580). It catalyzes in vitro the oxidation of d-lactate to pyruvate using flavin adenine dinucleotide as a cofactor; knowledge of its function in the context of the plant cell remains sketchy. Blue native-polyacrylamide gel electrophoresis of mitochondrial extracts combined with in gel activity assays using different substrates and tandem mass spectrometry allowed us to definitely show that d-LDH acts specifically on d-lactate, is active as a dimer, and does not associate with respiratory supercomplexes of the inner mitochondrial membrane. The combined use of cytochrome c (CYTc) loss-of-function mutants and respiratory complex III inhibitors showed that CYTc acts as the in vivo electron acceptor of d-LDH. CYTc loss-of-function mutants, as well as the d-LDH mutants, were more sensitive to d-lactate and MGO, indicating that they function in the same pathway. In addition, overexpression of d-LDH and CYTc increased tolerance to d-lactate and MGO Together with fine-localization of d-LDH, the functional interaction with CYTc in vivo strongly suggests that d-lactate oxidation takes place in the mitochondrial intermembrane space, delivering electrons to the respiratory chain through CYTc These results provide a comprehensive picture of the organization and function of d-LDH in the plant cell and exemplify how the plant mitochondrial respiratory chain can act as a multifunctional electron sink for reductant from cytosolic pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromos c/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Piruvaldehído/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálisis , Western Blotting , Células Cultivadas , Citocromos c/genética , Transporte de Electrón , L-Lactato Deshidrogenasa/genética , Ácido Láctico/metabolismo , Espectrometría de Masas , Microscopía Confocal , Membranas Mitocondriales/metabolismo , Mutación , Oxidación-Reducción , Consumo de Oxígeno , Plantas Modificadas Genéticamente , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA