Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Arch Toxicol ; 96(1): 335-365, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687351

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.


Asunto(s)
Trastorno Autístico , Retardadores de Llama , Neuropéptidos , Animales , Femenino , Éteres Difenilos Halogenados/toxicidad , Humanos , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Fenotipo
2.
ACS Chem Biol ; 16(2): 324-333, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33412003

RESUMEN

N6-methyladenosine (m6A) has emerged as the most abundant mRNA modification that regulates gene expression in many physiological processes. m6A modification in RNA controls cellular proliferation and pluripotency and has been implicated in the progression of multiple disease states, including cancer. RNA m6A methylation is controlled by a multiprotein "writer" complex including the enzymatic factor methyltransferase-like protein 3 (METTL3) that regulates methylation and two "eraser" proteins, RNA demethylase ALKBH5 (ALKBH5) and fat mass- and obesity-associated protein (FTO), that demethylate m6A in transcripts. FTO can also demethylate N6,2'-O-dimethyladenosine (m6Am), which is found adjacent to the m7G cap structure in mRNA. FTO has recently gained interest as a potential cancer target, and small molecule FTO inhibitors such as meclofenamic acid have been shown to prevent tumor progression in both acute myeloid leukemia and glioblastoma in vivo models. However, current FTO inhibitors are unsuitable for clinical applications due to either poor target selectivity or poor pharmacokinetics. In this work, we describe the structure-based design, synthesis, and biochemical evaluation of a new class of FTO inhibitors. Rational design of 20 small molecules with low micromolar IC50's and specificity toward FTO over ALKBH5 identified two competitive inhibitors FTO-02 and FTO-04. Importantly, FTO-04 prevented neurosphere formation in patient-derived glioblastoma stem cells (GSCs) without inhibiting the growth of healthy neural stem cell-derived neurospheres. Finally, FTO-04 increased m6A and m6Am levels in GSCs consistent with FTO inhibition. These results support FTO-04 as a potential new lead for treatment of glioblastoma.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Pirimidinas/farmacología , Adenosina/análogos & derivados , Adenosina/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Sitios de Unión , Desmetilación/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Células Madre Neoplásicas , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/metabolismo , ARN/química , ARN/metabolismo
3.
Sci Rep ; 10(1): 18102, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093533

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardant chemicals and environmental contaminants with endocrine-disrupting properties that are associated with diabetes and metabolic syndrome in humans. However, their diabetogenic actions are not completely characterized or understood. In this study, we investigated the effects of DE-71, a commercial penta-mixture of PBDEs, on glucoregulatory parameters in a perinatal exposure model using female C57Bl/6 mice. Results from in vivo glucose and insulin tolerance tests and ex vivo analyses revealed fasting hyperglycemia, glucose intolerance, reduced sensitivity and delayed glucose clearance after insulin challenge, decreased thermogenic brown adipose tissue mass, and exaggerated hepatic endocannabinoid tone in F1 offspring exposed to 0.1 mg/kg DE-71 relative to control. DE-71 effects on F0 dams were more limited indicating that indirect exposure to developing offspring is more detrimental. Other ex vivo glycemic correlates occurred more generally in exposed F0 and F1, i.e., reduced plasma insulin and altered glucoregulatory endocrines, exaggerated sympathoadrenal activity and reduced hepatic glutamate dehydrogenase enzymatic activity. Hepatic PBDE congener analysis indicated maternal transfer of BDE-28 and -153 to F1 at a collective level of 200 ng/g lipid, in range with maximum values detected in serum of human females. Given the persistent diabetogenic phenotype, especially pronounced in female offspring after developmental exposure to environmentally relevant levels of DE-71, additional animal studies should be conducted that further characterize PBDE-induced diabetic pathophysiology and identify critical developmental time windows of susceptibility. Longitudinal human studies should also be conducted to determine the risk of long-lasting metabolic consequences after maternal transfer of PBDEs during early-life development.


Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Endocannabinoides/metabolismo , Éteres Difenilos Halogenados/toxicidad , Hormonas/sangre , Hígado/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Glucemia/análisis , Diabetes Mellitus/inducido químicamente , Femenino , Glucagón/sangre , Péptido 1 Similar al Glucagón/sangre , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA