RESUMEN
The correlation length ξ, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to the glass temperature. We solve this problem by introducing a scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation length. The scaling law is successfully tested against experimental measurements in a CuMn single crystal and against large-scale simulations on the Janus II dedicated computer.
RESUMEN
A growing body of evidence indicates that the sluggish low-temperature dynamics of glass formers (e.g., supercooled liquids, colloids, or spin glasses) is due to a growing correlation length. Which is the effective field theory that describes these correlations? The natural field theory was drastically simplified by Bray and Roberts in 1980. More than 40 years later, we confirm the tenets of Bray and Roberts's theory by studying the Ising spin glass in an externally applied magnetic field, both in four spatial dimensions (data obtained from the Janus collaboration) and on the Bethe lattice.