Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Surg Obes Relat Dis ; 16(10): 1575-1585, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32475753

RESUMEN

BACKGROUND: Stool samples have been widely used to evaluate gut microbiota; however, little is known about the composition of human small intestinal microbiota and the alterations provoked by insulin resistance. OBJECTIVE: To describe the composition of jejunal microbiota in morbidly obese patients, as well as its link with insulin resistance and metformin treatment. SETTING: Virgen de la Victoria University Hospital and Regional University Hospital, Málaga, Spain. METHODS: Jejunal biopsies from 46 morbidly obese patients were analyzed by next-generation sequencing method. Patients were classified in the following 3 groups: low homeostasis model assessment of insulin resistance index (HOMA-IR) value, high HOMA-IR value, and metformin-treated type 2 diabetes patients (T2D-metf). RESULTS: Richness (q = .011) together with Proteobacteria (W = 2), Fusobacteria (W = 2), and Bacteroidetes (W = 1) phyla were significantly higher in high HOMA-IR compared with low HOMA-IR group. At family level, several differences were found between low HOMA-IR and T2D-metf group, being the most important the higher abundance of Halomonadacea in T2D-metf group (W = 22). PICRUSt analysis showed that predicted genes involved in trimethylamine-N-oxide biosynthesis pathway could be increased in jejunal microbiota of T2D-metf group compared with the low HOMA-IR group, while indole biosynthesis pathway could be increased in the low HOMA-IR group compared with the high HOMA-IR group. CONCLUSION: An increase in richness and an enrichment in Proteobacteria, Fusobacteria, and Bacteroidetes was observed in jejunal from morbidly obese patients with high insulin resistance. Halomonadaceae family was significantly increased in metformin-treated patients. Functional analysis of predicted metagenome suggests that trimethylamine-N-oxide biosynthesis pathway could be increased in the jejunal microbiota of T2D-meft group, while indole biosynthesis pathway could be increased in low HOMA-IR group. These results contribute to the increase in the scarce knowledge about the mucosal microbiota of the hardly accessible small intestine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Obesidad Mórbida , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Insulina , Yeyuno , Metformina/uso terapéutico , Membrana Mucosa , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA