Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Dairy Sci ; 99(1): 146-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26585475

RESUMEN

Contamination of fluid and processed milk products with endospore-forming bacteria, such as Bacillaceae, affect milk quality and longevity. Contaminants come from a variety of sources, including the dairy farm environment, transportation equipment, or milk processing machinery. Tracking the origin of bacterial contamination to allow specifically targeted remediation efforts depends on a reliable strain-typing method that is reproducible, fast, easy to use, and amenable to computerized analysis. Our objective was to adapt a recently developed genotype-based Escherichia coli strain-typing method, called pyroprinting, for use in a microbial source-tracking study to follow endospore-forming bacillus bacteria from raw milk to powdered milk. A collection of endospores was isolated from both raw milk and its finished powder, and, after germination, the vegetative cells were subject to the pyroprinting protocol. Briefly, a ribosomal DNA intergenic transcribed spacer present in multiple copies in Bacillaceae genomes was amplified by the PCR. This multicopy locus generated a mixed PCR product that was subsequently subject to pyrosequencing, a quantitative real-time sequencing method. Through a series of enzymatic reactions, each nucleotide incorporation event produces a photon of light that is quantified at each nucleotide dispensation. The pattern of light peaks generated from this mixed template reaction is called a pyroprint. Isolates with pyroprints that match with a Pearson correlation of 0.99 or greater are considered to be in the same group. The pyroprint also contains some sequence data useful for presumptive species-level identification. This method identified groups with isolates from raw milk only, from powdered milk only, or from both sources. This study confirms pyroprinting as a rapid, reproducible, automatically digitized tool that can be used to distinguish bacterial strains into taxonomically relevant groups and, thus, indicate probable origins of bacterial contamination in powdered milk.


Asunto(s)
Bacillaceae/clasificación , Bacillaceae/aislamiento & purificación , Leche/microbiología , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Manipulación de Alimentos , ARN Ribosómico 16S/genética , Esporas Bacterianas/aislamiento & purificación
2.
PLoS Comput Biol ; 10(11): e1003896, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25411792

RESUMEN

Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students.


Asunto(s)
Biología/educación , Biología Computacional/educación , Conducta Cooperativa , Estudiantes/psicología , Humanos , Programas Informáticos
3.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37801069

RESUMEN

Understanding how numerous actin-binding proteins (ABPs) work in concert to control the assembly, organization, and turnover of the actin cytoskeleton requires quantitative information about the levels of each component. Here, we measured the cellular concentrations of actin and the majority of the conserved ABPs in Saccharomyces cerevisiae, as well as the free (cytosolic) fractions of each ABP. The cellular concentration of actin is estimated to be 13.2 µM, with approximately two-thirds in the F-actin form and one-third in the G-actin form. Cellular concentrations of ABPs range from 12.4 to 0.85 µM (Tpm1> Pfy1> Cof1> Abp1> Srv2> Abp140> Tpm2> Aip1> Cap1/2> Crn1> Sac6> Twf1> Arp2/3> Scp1). The cytosolic fractions of all ABPs are unexpectedly high (0.6-0.9) and remain so throughout the cell cycle. Based on these numbers, we speculate that F-actin binding sites are limited in vivo, which leads to high cytosolic levels of ABPs, and in turn helps drive the rapid assembly and turnover of cellular F-actin structures.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Proteínas de Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo
4.
Scholarsh Pract Undergrad Res ; 6(3): 17-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731515

RESUMEN

The Genomics Education Partnership (GEP), a consortium of diverse colleges/universities, provides support for integrating genomics research into undergraduate curricula. To increase research opportunities for underrepresented students, GEP is expanding to more community colleges (CC). Genomics research, requiring only a computer with internet access, may be particularly accessible for 2-year institutions with limited research capacity and significant budget constraints. To understand how GEP supports student research at CCs, we analyzed student knowledge and self-reported outcomes. We found that CC student gains are comparable to non-CC student gains, with improvements in attitudes toward science and thriving in science. Our early findings suggest that the GEP model of centralized support with flexible CURE implementation benefits CC students and may help mitigate barriers to implementing research at CCs.

5.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061313

RESUMEN

The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits. While the GEP CURE produces positive outcomes overall, the students with more positive attitudes toward science, particularly with respect to epistemic beliefs, showed greater gains. The findings indicate the importance of a student's epistemic beliefs to achieving positive learning outcomes.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32148609

RESUMEN

A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students' learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our "formative frustration" hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of "formative frustration" is an important aspect for a successful CURE.

7.
Biochem Mol Biol Educ ; 47(5): 498-505, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31381264

RESUMEN

Course-based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):498-505, 2019.


Asunto(s)
Bioquímica/educación , Proteínas/química , Investigación , Curriculum , Docentes , Humanos , Aprendizaje , Estudiantes , Universidades
8.
PLoS One ; 14(11): e0224288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31738797

RESUMEN

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Asunto(s)
Biología/educación , Biología Computacional/educación , Curriculum , Docentes/estadística & datos numéricos , Femenino , Humanos , Masculino , Motivación , Estudiantes/psicología , Encuestas y Cuestionarios/estadística & datos numéricos , Estados Unidos
9.
PLoS One ; 13(6): e0196878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870542

RESUMEN

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Asunto(s)
Biología Computacional/educación , Competencia Mental , Aprendizaje Basado en Problemas , Adolescente , Adulto , Femenino , Humanos , Masculino , Estados Unidos
10.
Curr Biol ; 13(24): 2159-69, 2003 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-14680631

RESUMEN

BACKGROUND: Dynamic remodeling of the actin cytoskeleton requires rapid turnover of actin filaments, which is regulated in part by the actin filament severing/depolymerization factor cofilin/ADF. Two factors that cooperate with cofilin are Srv2/CAP and Aip1. Human CAP enhances cofilin-mediated actin turnover in vitro, but its biophysical properties have not been defined, and there has been no in vivo evidence reported for its role in turnover. Xenopus Aip1 forms a cofilin-dependent cap at filament barbed ends. It has been unclear how these diverse activities are coordinated in vivo. RESULTS: Purified native yeast Srv2/CAP forms a high molecular weight structure comprised solely of actin and Srv2. The complex is linked to actin filaments via the SH3 domain of Abp1. Srv2 complex catalytically accelerates cofilin-dependent actin turnover by releasing cofilin from ADP-actin monomers and enhances the ability of profilin to stimulate nucleotide exchange on ADP-actin. Yeast Aip1 forms a cofilin-dependent filament barbed end cap, disrupted by the cof1-19 mutant. Genetic analyses show that specific combinations of activities mediated by cofilin, Srv2, Aip1, and capping protein are required in vivo. CONCLUSIONS: We define two genetically and biochemically separable functions for cofilin in actin turnover. One is formation of an Aip1-cofilin cap at filament barbed ends. The other is cofilin-mediated severing/depolymerization of filaments, accelerated indirectly by Srv2 complex. We show that the Srv2 complex is a large multimeric structure and functions as an intermediate in actin monomer processing, converting cofilin bound ADP-actin monomers to profilin bound ATP-actin monomers and recycling cofilin for new rounds of filament depolymerization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Contráctiles , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas , Proteínas de Xenopus , Factores Despolimerizantes de la Actina , Proteínas Adaptadoras Transductoras de Señales , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Técnicas de Transferencia de Gen , Immunoblotting , Proteínas de Microfilamentos/genética , Microscopía Electrónica , Modelos Moleculares , Profilinas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Dominios Homologos src/genética
11.
Mol Biol Cell ; 14(7): 2617-29, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12857851

RESUMEN

Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member of this family, Scp1, which most closely resembles transgelin and contains one calponin homology (CH) domain. We show that Scp1 is a novel component of yeast cortical actin patches and shares in vivo functions and biochemical activities with Sac6/fimbrin, the one other actin patch component that contains CH domains. Purified Scp1 binds directly to filamentous actin, cross-links actin filaments, and stabilizes filaments against disassembly. Sequences in Scp1 sufficient for actin binding and cross-linking reside in its carboxy terminus, outside the CH domain. Overexpression of SCP1 suppresses sac6Delta defects, and deletion of SCP1 enhances sac6Delta defects. Together, these data show that Scp1 and Sac6/fimbrin cooperate to stabilize and organize the yeast actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Citoesqueleto/metabolismo , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Calponinas
12.
J Microbiol Biol Educ ; 17(1): 143-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27047612

RESUMEN

After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

13.
J Microbiol Methods ; 105: 121-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25087478

RESUMEN

Bacterial strain typing is commonly employed in studies involving epidemiology, population ecology, and microbial source tracking to identify sources of fecal contamination. Methods for differentiating strains generally use either a collection of phenotypic traits or rely on some interrogation of the bacterial genotype. This report introduces pyroprinting, a novel genotypic strain typing method that is rapid, inexpensive, and discriminating compared to the most sensitive methods already in use. Pyroprinting relies on the simultaneous pyrosequencing of polymorphic multicopy loci, such as the intergenic transcribed spacer regions of rRNA operons in bacterial genomes. Data generated by sequencing combinations of variable templates are reproducible and intrinsically digitized. The theory and development of pyroprinting in Escherichia coli, including the selection of similarity thresholds to define matches between isolates, are presented. The pyroprint-based strain differentiation limits and phylogenetic relevance compared to other typing methods are also explored. Pyroprinting is unique in its simplicity and, paradoxically, in its intrinsic complexity. This new approach serves as an excellent alternative to more cumbersome or less phylogenetically relevant strain typing methods.


Asunto(s)
Dermatoglifia del ADN/métodos , Escherichia coli/clasificación , Escherichia coli/genética , Tipificación Molecular/métodos , Epidemiología Molecular
14.
CBE Life Sci Educ ; 13(4): 711-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25452493

RESUMEN

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


Asunto(s)
Genómica/educación , Curriculum , Modelos Educacionales , Desarrollo de Programa , Estados Unidos , Universidades
15.
CBE Life Sci Educ ; 13(1): 111-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24591510

RESUMEN

There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit.


Asunto(s)
Biología/educación , Curriculum , Investigación/educación , Actitud , Conducta Cooperativa , Recolección de Datos , Docentes , Genoma , Genómica/educación , Humanos , Conocimiento , Aprendizaje , Anotación de Secuencia Molecular , Evaluación de Programas y Proyectos de Salud , Investigadores , Autoinforme , Encuestas y Cuestionarios , Factores de Tiempo
16.
CBE Life Sci Educ ; 9(1): 55-69, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20194808

RESUMEN

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Asunto(s)
Investigación Genética , Genómica/educación , Laboratorios , Universidades , Animales , Docentes , Estudiantes/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA