Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3797-3808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35596745

RESUMEN

PURPOSE: [18F]-labeled positron emission tomography (PET) radioligands permit in vivo assessment of Alzheimer's disease biomarkers, including aggregated neurofibrillary tau (NFT) with [18F]flortaucipir. Due to structural similarities of flortaucipir with some monoamine oxidase A (MAO-A) inhibitors, this study aimed to evaluate flortaucipir binding to MAO-A and MAO-B and any potential impact on PET interpretation. METHODS: [18F]Flortaucipir autoradiography was performed on frozen human brain tissue slices, and PET imaging was conducted in rats. Dissociation constants were determined by saturation binding, association and dissociation rates were measured by kinetic binding experiments, and IC50 values were determined by competition binding. RESULTS: Under stringent wash conditions, specific [18F]flortaucipir binding was observed on tau NFT-rich Alzheimer's disease tissue and not control tissue. In vivo PET experiments in rats revealed no evidence of [18F]flortaucipir binding to MAO-A; pre-treatment with MAO inhibitor pargyline did not impact uptake or wash-out of [18F]flortaucipir. [18F]Flortaucipir bound with low nanomolar affinity to human MAO-A in a microsomal preparation in vitro but with a fast dissociation rate relative to MAO-A ligand fluoroethyl-harmol, consistent with no observed in vivo binding in rats of [18F]flortaucipir to MAO-A. Direct binding of flortaucipir to human MAO-B was not detected in a microsomal preparation. A high concentration of flortaucipir (IC50 of 1.3 µM) was found to block binding of the MAO-B ligand safinamide to MAO-B on microsomes suggesting that, at micromolar concentrations, flortaucipir weakly binds to MAO-B in vitro. CONCLUSION: These data suggest neither MAO-A nor MAO-B binding will contribute significantly to the PET signal in cortical target areas relevant to the interpretation of [18F]flortaucipir.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Carbolinas , Humanos , Ligandos , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Tomografía de Emisión de Positrones/métodos , Ratas , Proteínas tau/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(35): 9928-33, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27543332

RESUMEN

The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G protein-coupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a "hydrophobic bridge" on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling.


Asunto(s)
Conformación Proteica , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Sitios de Unión/genética , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Receptores CXCR4/genética , Homología de Secuencia de Aminoácido
3.
BMC Neurosci ; 16: 33, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26037485

RESUMEN

BACKGROUND: Domestic cats (felis catus) have a reputation for being rather unpredictable in their dietary choices. While their appetite for protein or savory flavors is consistent with their nutritional needs, their preference among protein-sufficient dietary options may relate to differences in the response to other flavor characteristics. Studies of domestic cat taste perception are limited, in part, due to the lack of receptor sequence information. Several studies have described the phylogenetic relationship of specific cat taste receptor sequences as compared with other carnivores. For example, domestic cats are obligate carnivores and their receptor Tas1r2, associated with the human perception of sweet, is present only as a pseudogene. Similarly, the cat perception of bitter may differ from that of other mammals due to variations in their repertoire of bitter receptor (Tas2r) genes. This report includes the first functional characterization of domestic cat taste receptors. RESULTS: We functionally expressed two uncharacterized domestic sequences Tas2r38 and Tas2r43 and deorphanized the receptors using a cellular functional assay. Statistical significance was determined using an unpaired, two-tailed t-test. The cat sequence for Tas2r38 contains 3 major amino acid residues known to confer the taster phenotype (PAI), which is associated with sensitivity to the bitter compounds PROP and PTC. However, in contrast to human TAS2R38, cat Tas2r38 is activated by PTC but not by PROP. Furthermore, like its human counterpart, cat Tas2r43 is activated by aloin and denatonium, but differs from the human TAS2R43 by insensitivity to saccharin. The responses of both cat receptors to the bitter ligands were concentration-dependent and were inhibited by the human bitter blocker probenecid. CONCLUSIONS: These data demonstrate that the response profiles of the cat bitter receptors Tas2r38 and Tas2r43 are distinct from those of their orthologous human receptors. Results with cat Tas2r38 also demonstrate that additional residues beyond those classically associated with PROP sensitivity in humans influence the sensitivity to PROP and PTC. Functional studies of the human bitter receptor family are being applied to the development of food and medicinal products with more appealing flavor profiles. Our work lays the foundation for similar work applied to felines.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Calcio/metabolismo , Gatos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Humanos , Probenecid/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Fármacos del Sistema Sensorial/farmacología , Especificidad de la Especie , Transfección
4.
Curr Nutr Rep ; 10(2): 137-145, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33886074

RESUMEN

PURPOSE OF REVIEW: From single cells to entire organisms, biological entities are in constant communication with their surroundings, deciding what to 'allow' in, and what to reject. In very different ways, the immune and taste systems both fulfill this function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans to explore our understanding of the interplay between these systems. RECENT FINDINGS: Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body. Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and composition. There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity, responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells throughout the body as a form of homeostatic control.


Asunto(s)
COVID-19/inmunología , Gusto/inmunología , Animales , Bases de Datos Factuales , Humanos , Inmunidad , Inflamación/inmunología , SARS-CoV-2/aislamiento & purificación , Papilas Gustativas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA