Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(7): 559-563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670884

RESUMEN

In January 2024, a targeted conference, 'CellVis2', was held at Scripps Research in La Jolla, USA, the second in a series designed to explore the promise, practices, roadblocks, and prospects of creating, visualizing, sharing, and communicating physical representations of entire biological cells at scales down to the atom.

2.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420884

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Asunto(s)
Inteligencia Artificial , Bases de Datos de Proteínas , Proteínas , Aprendizaje Automático , Conformación Proteica , Proteínas/química , Reproducibilidad de los Resultados
3.
Trends Biochem Sci ; 45(6): 472-483, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32413324

RESUMEN

Experimental information from microscopy, structural biology, and bioinformatics may be integrated to build structural models of entire cells with molecular detail. This integrative modeling is challenging in several ways: the intrinsic complexity of biology results in models with many closely packed and heterogeneous components; the wealth of available experimental data is scattered among multiple resources and must be gathered, reconciled, and curated; and computational infrastructure is only now gaining the capability of modeling and visualizing systems of this complexity. We present recent efforts to address these challenges, both with artistic approaches to depicting the cellular mesoscale, and development and application of methods to build quantitative models.


Asunto(s)
Biología Celular , Biología Computacional , Descubrimiento de Drogas , Estructura Molecular
4.
PLoS Biol ; 18(8): e3000815, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760062

RESUMEN

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Asunto(s)
Betacoronavirus/crecimiento & desarrollo , Investigación Biomédica/educación , Infecciones por Coronavirus/prevención & control , Bases de Datos de Proteínas , Medicina en las Artes , Pandemias/prevención & control , Neumonía Viral/prevención & control , Animales , Betacoronavirus/fisiología , Investigación Biomédica/métodos , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Presentación de Datos , Humanos , Difusión de la Información/métodos , Estadios del Ciclo de Vida , Neumonía Viral/epidemiología , Neumonía Viral/virología , Mucosa Respiratoria/virología , SARS-CoV-2
5.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211854

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Sustancias Macromoleculares/química , Conformación Proteica , Proteínas/química , Bioingeniería/métodos , Investigación Biomédica/métodos , Biotecnología/métodos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Humanos , Sustancias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Programas Informáticos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Trends Biochem Sci ; 48(1): 2-4, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563656
7.
J Biol Chem ; 296: 100742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33957126

RESUMEN

Ever since the first structures of proteins were determined in the 1960s, structural biologists have required methods to visualize biomolecular structures, both as an essential tool for their research and also to promote 3D comprehension of structural results by a wide audience of researchers, students, and the general public. In this review to celebrate the 50th anniversary of the Protein Data Bank, we present our own experiences in developing and applying methods of visualization and analysis to the ever-expanding archive of protein and nucleic acid structures in the worldwide Protein Data Bank. Across that timespan, Jane and David Richardson have concentrated on the organization inside and between the macromolecules, with ribbons to show the overall backbone "fold" and contact dots to show how the all-atom details fit together locally. David Goodsell has explored surface-based representations to present and explore biological subjects that range from molecules to cells. This review concludes with some ideas about the current challenges being addressed by the field of biomolecular visualization.


Asunto(s)
Bases de Datos de Proteínas/historia , Modelos Moleculares , Biología Molecular/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos
8.
Proteins ; 90(5): 1054-1080, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580920

RESUMEN

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Asunto(s)
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudios Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Nucleic Acids Res ; 47(D1): D464-D474, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357411

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, rcsb.org), the US data center for the global PDB archive, serves thousands of Data Depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without usage restrictions to more than 1 million rcsb.org Users worldwide and 600 000 pdb101.rcsb.org education-focused Users around the globe. PDB Data Depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy and 3D electron microscopy. PDB Data Consumers include researchers, educators and students studying Fundamental Biology, Biomedicine, Biotechnology and Energy. Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSB PDB web portals in support of a 'Structural View of Biology.'


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Investigación Biomédica/educación , Biotecnología/educación , Curaduría de Datos , Programas Informáticos
10.
PLoS Comput Biol ; 15(6): e1007150, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31194731

RESUMEN

A coarse-grain computational method integrates biophysical and structural data to generate models of HIV-1 genomic RNA, nucleocapsid and integrase condensed into a mature ribonucleoprotein complex. Several hypotheses for the initial structure of the genomic RNA and oligomeric state of integrase are tested. In these models, integrase interaction captures features of the relative distribution of gRNA in the immature virion and increases the size of the RNP globule, and exclusion of nucleocapsid from regions with RNA secondary structure drives an asymmetric placement of the dimerized 5'UTR at the surface of the RNP globule.


Asunto(s)
VIH-1 , ARN Viral , Ribonucleoproteínas , Proteínas Virales , Biología Computacional , VIH-1/química , VIH-1/metabolismo , Simulación de Dinámica Molecular , ARN Viral/química , ARN Viral/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión , Ensamble de Virus
11.
Nucleic Acids Res ; 45(D1): D271-D281, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794042

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a 'Structural View of Biology.' Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Proteínas/química , Proteínas/genética , Conjuntos de Datos como Asunto , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Proteica , Proteínas/metabolismo , Programas Informáticos , Relación Estructura-Actividad , Interfaz Usuario-Computador , Navegador Web
12.
Nat Methods ; 12(1): 85-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25437435

RESUMEN

cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.


Asunto(s)
Algoritmos , Modelos Biológicos , Biología de Sistemas , Biología Computacional/métodos , Simulación por Computador , VIH/ultraestructura , Humanos , Biología Molecular , Programas Informáticos
13.
PLoS Biol ; 13(5): e1002140, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25942442

RESUMEN

The Research Collaboratory for Structural Bioinformatics (RCSB) Molecule of the Month series provides a curated introduction to the 3-D biomolecular structures available in the Protein Data Bank archive and the tools that are available at the RCSB website for accessing and exploring them. A variety of educational materials, such as articles, videos, posters, hands-on activities, lesson plans, and curricula, build on this series for use in a variety of educational settings as a general introduction to key topics, such as enzyme action, protein synthesis, and viruses. The series and associated educational materials are freely available at www.rcsb.org.


Asunto(s)
Bases de Datos como Asunto , Biología Molecular/educación , Estructura Molecular
14.
Nucleic Acids Res ; 43(Database issue): D345-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428375

RESUMEN

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Sitios de Unión , Internet , Proteínas de la Membrana/química , Biología Molecular/educación , Anotación de Secuencia Molecular , Complejos Multiproteicos/química , Péptidos/química , Preparaciones Farmacéuticas/química , Investigación , Programas Informáticos
15.
Curr Top Microbiol Immunol ; 389: 243-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25716304

RESUMEN

Illustrations of the HIV Life Cycle. The illustrations include proteins, nucleic acids and membranes; small molecules and water are omitted for clarity. Host cell molecules are shown in shades of blue and green and blood plasma proteins are shown in shades of tan and brown. HIV proteins are shown in red and magenta, HIV RNA is in yellow and HIV DNA is in yellow-green. The 3D model of the mature virion was generated using CellPACK by Graham Johnson Illustrations of the major steps of HIV life cycle are presented that integrate information from structural and biophysical studies. The illustrations depict HIV and its interaction with its cellular host at a magnification that reveals all macromolecules. This report describes the sources of scientific support for the structures and processes shown in the illustrations.


Asunto(s)
VIH/crecimiento & desarrollo , Estadios del Ciclo de Vida , Virión/ultraestructura , Internalización del Virus , Liberación del Virus
16.
PLoS Comput Biol ; 11(12): e1004586, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26629955

RESUMEN

Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR-AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 -a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 -a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added.


Asunto(s)
Algoritmos , Diseño de Fármacos , Modelos Químicos , Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Programas Informáticos , Sitios de Unión , Ligandos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos
17.
J Chem Inf Model ; 56(8): 1597-607, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27384036

RESUMEN

We describe ADChemCast, a method for using results from virtual screening to create a richer representation of a target binding site, which may be used to improve ranking of compounds and characterize the determinants of ligand-receptor specificity. ADChemCast clusters docked conformations of ligands based on shared pairwise receptor-ligand interactions within chemically similar structural fragments, building a set of attributes characteristic of binders and nonbinders. Machine learning is then used to build rules from the most informational attributes for use in reranking of compounds. In this report, we use ADChemCast to improve the ranking of compounds in 11 diverse proteins from the Database of Useful Decoys-Enhanced (DUD-E) and demonstrate the utility of the method for characterizing relevant binding attributes in HIV reverse transcriptase.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Informática/métodos , Simulación del Acoplamiento Molecular , Ligandos , Conformación Proteica , Interfaz Usuario-Computador
18.
Nucleic Acids Res ; 41(Database issue): D475-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193259

RESUMEN

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher's PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Bioquímica/educación , Gráficos por Computador , Internet , Ligandos , Estructura Terciaria de Proteína , Investigación , Homología Estructural de Proteína
19.
Curr Res Struct Biol ; 7: 100121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221989

RESUMEN

A lattice-based method is presented for creating 3D models of entire bacterial nucleoids integrating ultrastructural information cryoelectron tomography, genomic and proteomic data, and experimental atomic structures of biomolecules and assemblies. The method is used to generate models of the minimal genome bacterium JCVI-Syn3A, producing a series of models that test hypotheses about transcription, condensation, and overall distribution of the genome. Lattice models are also used to generate atomic models of an entire JCVI-Syn3A cell.

20.
Patterns (N Y) ; 5(2): 100931, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370120

RESUMEN

Molecular origami offers an offline way to explore the 3D structures of biology. Visit PDB101.rcsb.org to download free paper models of DNA, green fluorescent protein, viruses, and more.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA