Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(21): 35068-35085, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859247

RESUMEN

Precise optical mode matching is of critical importance in experiments using squeezed-vacuum states. Automatic spatial-mode matching schemes have the potential to reduce losses and improve loss stability. However, in quantum-enhanced coupled-cavity experiments, such as gravitational-wave detectors, one must also ensure that the sub-cavities are also mode matched. We propose what we believe to be a new mode sensing scheme, which works for simple and coupled cavities. The scheme requires no moving parts, nor tuning of Gouy phases. Instead a diagnostic field tuned to the HG20/LG10 mode frequency is used. The error signals are derived to be proportional to the difference in waist position, and difference in Rayleigh ranges, between the sub-cavity eigenmodes. The two error signals are separable by 90 degrees of demodulation phase. We demonstrate reasonable error signals for a simplified Einstein Telescope optical design. This work will facilitate routine use of extremely high levels of squeezing in current and future gravitational-wave detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA