Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 13(1): 6427, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329007

RESUMEN

Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Complemento C4a/genética , Complemento C4a/líquido cefalorraquídeo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Trastornos Psicóticos/genética , Factores de Riesgo
2.
Neuron ; 56(1): 109-23, 2007 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17920019

RESUMEN

Inhibition of postsynaptic glutamate receptors at the Drosophila NMJ initiates a compensatory increase in presynaptic release termed synaptic homeostasis. BMP signaling is necessary for normal synaptic growth and stability. It remains unknown whether BMPs have a specific role during synaptic homeostasis and, if so, whether BMP signaling functions as an instructive retrograde signal that directly modulates presynaptic transmitter release. Here, we demonstrate that the BMP receptor (Wit) and ligand (Gbb) are necessary for the rapid induction of synaptic homeostasis. We also provide evidence that both Wit and Gbb have functions during synaptic homeostasis that are separable from NMJ growth. However, further genetic experiments demonstrate that Gbb does not function as an instructive retrograde signal during synaptic homeostasis. Rather, our data indicate that Wit and Gbb function via the downstream transcription factor Mad and that Mad-mediated signaling is continuously required during development to confer competence of motoneurons to express synaptic homeostasis.


Asunto(s)
Proteínas de Drosophila/fisiología , Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Factor de Crecimiento Transformador beta/fisiología , Nucleótidos de Adenina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Larva , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Mutagénesis Sitio-Dirigida/métodos , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/metabolismo , Técnicas de Placa-Clamp/métodos , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología
3.
Neuron ; 52(4): 663-77, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17114050

RESUMEN

Homeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic Ca(V)2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic Ca(V)2.1 in a homeostatic retrograde signaling system.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostasis/genética , Unión Neuromuscular/metabolismo , Transmisión Sináptica/genética , Animales , Canales de Calcio/genética , Canales de Calcio Tipo N/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación/genética , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/genética , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Factores de Tiempo
4.
J Med Chem ; 63(3): 1068-1083, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31955578

RESUMEN

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Convulsiones/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tiazoles/uso terapéutico , Animales , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Sitios de Unión , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratas , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/metabolismo , Tiazoles/farmacocinética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
5.
Nat Neurosci ; 22(3): 374-385, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718903

RESUMEN

Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.


Asunto(s)
Microglía/fisiología , Plasticidad Neuronal , Esquizofrenia/fisiopatología , Sinapsis/fisiología , Adolescente , Adulto , Anciano , Antibacterianos/administración & dosificación , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Microglía/efectos de los fármacos , Persona de Mediana Edad , Minociclina/administración & dosificación , Células-Madre Neurales/fisiología , Plasticidad Neuronal/efectos de los fármacos , Factores de Riesgo , Sinapsis/efectos de los fármacos , Adulto Joven
6.
Neuron ; 68(3): 512-28, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21040851

RESUMEN

Homeostatic processes have been proposed to explain the discrepancy between the dynamics of synaptic plasticity and the stability of brain function. Forms of synaptic plasticity such as long-term potentiation alter synaptic activity in a synapse- and cell-specific fashion. Although network-wide excitation triggers compensatory homeostatic changes, it is unknown whether neurons initiate homeostatic synaptic changes in response to cell-autonomous increases in excitation. Here we employ optogenetic tools to cell-autonomously excite CA1 pyramidal neurons and find that a compensatory postsynaptic depression of both AMPAR and NMDAR function results. Elevated calcium influx through L-type calcium channels leads to activation of a pathway involving CaM kinase kinase and CaM kinase 4 that induces synaptic depression of AMPAR and NMDAR responses. The synaptic depression of AMPARs but not of NMDARs requires protein synthesis and the GluA2 AMPAR subunit, indicating that downstream of CaM kinase activation divergent pathways regulate homeostatic AMPAR and NMDAR depression.


Asunto(s)
Homeostasis/genética , Homeostasis/fisiología , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/fisiología , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/fisiología , Channelrhodopsins , Electrofisiología , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Ratones , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa , Biosíntesis de Proteínas/fisiología , Células Piramidales/fisiología , Ratas , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA