Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Rev Genet ; 12(10): 730-6, 2011 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-21921928

RESUMEN

Access to genetic data across studies is an important aspect of identifying new genetic associations through genome-wide association studies (GWASs). Meta-analysis across multiple GWASs with combined cohort sizes of tens of thousands of individuals often uncovers many more genome-wide associated loci than the original individual studies; this emphasizes the importance of tools and mechanisms for data sharing. However, even sharing summary-level data, such as allele frequencies, inherently carries some degree of privacy risk to study participants. Here we discuss mechanisms and resources for sharing data from GWASs, particularly focusing on approaches for assessing and quantifying the privacy risks to participants that result from the sharing of summary-level data.


Asunto(s)
Recolección de Datos , Variación Genética , Estudio de Asociación del Genoma Completo , Difusión de la Información/métodos , Estudios de Cohortes , Confidencialidad , Recolección de Datos/legislación & jurisprudencia , Bases de Datos Genéticas , Variación Genética/fisiología , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Difusión de la Información/legislación & jurisprudencia , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple , Medición de Riesgo
2.
Bull Math Biol ; 73(8): 1909-31, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21103945

RESUMEN

Multiplex DNA profiles are used extensively for biomedical and forensic purposes. However, while DNA profile data generation is automated, human analysis of those data is not, and the need for speed combined with accuracy demands a computer-automated approach to sample interpretation and quality assessment. In this paper, we describe an integrated mathematical approach to modeling the data and extracting the relevant information, while rejecting noise and sample artifacts. We conclude with examples showing the effectiveness of our algorithms.


Asunto(s)
Dermatoglifia del ADN/métodos , Interpretación Estadística de Datos , Modelos Genéticos , Secuencias Repetidas en Tándem , Algoritmos , Alelos , Humanos
3.
Forensic Sci Int Genet ; 51: 102410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33373910

RESUMEN

OSIRIS is a mathematically-based software tool for Short Tandem Repeat (STR) and DNA fragment analysis (https://www.ncbi.nlm.nih.gov/osiris/). As part of its routine sample analyses, OSIRIS computes unique quality metrics that can be used for sample quality assessment. A common artifact of STR analysis is cross-channel pull-up or pull-down (negative pull-up). This occurs because of the spectral overlap between the dyes used with the marker set, and the failure of the color deconvolution matrix to isolate the colors in the dye set adequately. This paper describes a mathematical method for analyzing and quantifying the pull-up patterns across sample channels and effectively identifying and correcting the pull-up artifacts, as implemented in OSIRIS. Unlike approaches to pull-up that require a training set composed of previous samples, the algorithm described here uses a mathematical model of the underlying causes of pull-up. It is based solely on the information intrinsic to the sample it is analyzing and therefore incorporates the effects of the ambient conditions and the specific procedures used in creating the sample. These conditions are the physical determinants of the level of pull-up in the sample and are not likely to be represented in a training set consisting of past samples.


Asunto(s)
Artefactos , Dermatoglifia del ADN , Repeticiones de Microsatélite , Modelos Teóricos , Genética Forense , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA