Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Dairy Sci ; 102(12): 10772-10778, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31629525

RESUMEN

Colostrum plays an important role in initiating the development of the intestinal barrier in newborn mammals. Given its bioactivity, there is much interest in the potential use of bovine colostrum to improve human gastrointestinal health throughout the life span. There is evidence that bovine colostrum is effective at improving small intestinal barrier integrity and some indication that it may alter colonic motility. However, for colostrum to be used as a product to improve intestinal health, it needs to be bioactive after processing. The aim of this study was to determine whether industrial processing of bovine colostrum affects its ability to improve small intestinal barrier integrity or alter distal colon motility. Three colostrum sample types were compared; raw whole colostrum powder (WCP), raw skim colostrum powder (SCP), and industrially produced colostrum milk protein concentrate (CMPC). To determine whether these colostrum powders had different effects on small intestinal barrier integrity, their effects on the transepithelial electrical resistance across an in vitro intestinal epithelial layer (Caco-2 cells) were measured, both with and without a challenge from the proinflammatory cytokine tumor necrosis factor-α. These results showed that CMPC enhanced transepithelial electrical resistance across unchallenged epithelial cell layers, whereas the raw colostrum samples, WCP and SCP, did not have an effect. The colostrum samples were also compared to determine how they affect contractility in the distal colon isolated from the rat. Skim colostrum powder was the only sample to act directly on colonic tissue to modulate motility, increasing the amplitude of contractions. The results show that bovine colostrum is able to improve small intestinal barrier integrity and alter colon motility, and they implicate different components. The barrier integrity enhancement was apparent only in the industrial CMPC, which may have been due to the increase in protein concentration or the release of small peptides as a result of processing. The ability to alter colon motility was present in SCP but absent in WCP, again implying that an increase in protein concentration is responsible for the effect. However, this effect was not apparent for the industrially processed CMPC, suggesting denaturation or degradation of the active component. The beneficial effect of colostrum on small intestinal barrier integrity was present after processing, confirming that it is feasible to industrially produce an active product for gut health.


Asunto(s)
Calostro , Mucosa Intestinal/efectos de los fármacos , Proteínas de la Leche/farmacología , Animales , Células CACO-2 , Bovinos , Humanos , Proteínas de la Leche/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Dairy Sci ; 100(2): 886-891, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939537

RESUMEN

Bovine lactoferrin is an important milk protein with many health-promoting properties, including improving intestinal barrier integrity. Dysfunction of this barrier, commonly referred to as "leaky gut," has been linked to inflammatory and autoimmune diseases. With some processing techniques, lactoferrin isolated from milk collected at the start of the milking season (early lactation) may have lower purity than that isolated from milk collected during the rest of the milking season (mid-lactation) and could result in differences in bioactivity based on the stage of lactation. We compared reversed-phase HPLC chromatographs of early-lactation and mid-lactation preparations and found that both had large chromatograph peaks at the time predicted for lactoferrin. The notable difference between the 2 chromatographs was a much larger peak in the early-lactation lactoferrin sample that was determined to be angiogenin. Angiogenin was first identified due to its ability to induce new blood vessel formation, but is now known to be involved in numerous physiological processes. Then, we compared the effects of early-lactation and mid-lactation lactoferrin preparations in 2 bioassays: trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity, and peripheral blood mononuclear cell cytokine secretion, a measure of immune-stimulatory properties. We found that early-lactation lactoferrin increased TEER across Caco-2 cell layers compared with control from 10 to 48 h, mid-lactation lactoferrin did not alter TEER. We also found that early-lactation lactoferrin reduced the amount of IL-8 produced by peripheral blood mononuclear cells (compared with those treated with control medium) to a greater extent than mid-lactation lactoferrin. A pro-inflammatory chemokine, IL-8 is also known to decrease barrier function. These results suggest that the decrease in IL-8 production in the presence of early-lactation lactoferrin may be the mechanism by which it increases TEER. The anti-inflammatory effect of early-lactation lactoferrin may be related to the presence of angiogenin, which is known to suppress inflammatory responses. This work indicates that products rich in angiogenin may have intestinal health benefits, and further work to investigate this is warranted.


Asunto(s)
Células CACO-2 , Lactoferrina , Animales , Bovinos , Femenino , Humanos , Lactancia , Leucocitos Mononucleares/efectos de los fármacos , Leche/química
3.
Microorganisms ; 10(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208928

RESUMEN

In a very fascinating read, John Goodsir, a Scottish surgeon, describes how he isolated "vegetable organisms" from the "ejected fluid" from the stomach of his 19-year-old patient [...].

4.
Scand J Gastroenterol ; 46(9): 1057-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21663486

RESUMEN

OBJECTIVE: To assess the impact of Bifidobacterium lactis HN019 supplementation on whole gut transit time (WGTT) and frequency of functional gastrointestinal (GI) symptoms in adults. MATERIAL AND METHODS: We randomized 100 subjects (mean age: 44 years; 64% female) with functional GI symptoms to consume a proprietary probiotic strain, B. lactis HN019 (Fonterra Research Centre, Palmerston North, New Zealand), at daily doses of 17.2 billion colony forming units (CFU) (high dose; n = 33), 1.8 billion CFU (low dose; n = 33), or placebo (n = 34) for 14 days. The primary endpoint of WGTT was assessed by X-ray on days 0 and 14 and was preceded by consumption of radiopaque markers once a day for 6 days. The secondary endpoint of functional GI symptom frequency was recorded with a subject-reported numeric (1-100) scale before and after supplementation. RESULTS: Decreases in mean WGTT over the 14-day study period were statistically significant in the high dose group (49 ± 30 to 21 ± 32 h, p < 0.001) and the low dose group (60 ± 33 to 41 ± 39 h, p = 0.01), but not in the placebo group (43 ± 31 to 44 ± 33 h). Time to excretion of all ingested markers was significantly shorter in the treatment groups versus placebo. Of the nine functional GI symptoms investigated, eight significantly decreased in frequency in the high dose group and seven decreased with low dose, while two decreased in the placebo group. No adverse events were reported in any group. CONCLUSIONS: Daily B. lactis HN019 supplementation is well tolerated, decreases WGTT in a dose-dependent manner, and reduces the frequency of functional GI symptoms in adults.


Asunto(s)
Bifidobacterium , Tracto Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Probióticos/administración & dosificación , Dolor Abdominal/prevención & control , Adulto , Análisis de Varianza , Estreñimiento/prevención & control , Diarrea/prevención & control , Femenino , Flatulencia/prevención & control , Tracto Gastrointestinal/diagnóstico por imagen , Humanos , Reflujo Laringofaríngeo/prevención & control , Masculino , Persona de Mediana Edad , Náusea/prevención & control , Probióticos/uso terapéutico , Radiografía , Vómitos/prevención & control
5.
Adv Nutr ; 11(4): 890-907, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32149335

RESUMEN

There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ansiedad , Encéfalo , Depresión , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA