Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 618(7965): 494-499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198493

RESUMEN

Hydrodynamics accurately describe relativistic heavy-ion collision experiments well before local thermal equilibrium is established1. This unexpectedly rapid onset of hydrodynamics-which takes place on the fastest available timescale-is called hydrodynamization2-4. It occurs when an interacting quantum system is quenched with an energy density that is much greater than its ground-state energy density5,6. During hydrodynamization, energy gets redistributed across very different energy scales. Hydrodynamization precedes local equilibration among momentum modes5, which is local prethermalization to a generalized Gibbs ensemble7,8 in nearly integrable systems or local thermalization in non-integrable systems9. Although many theories of quantum dynamics postulate local prethermalization10,11, the associated timescale has not been studied experimentally. Here we use an array of one-dimensional Bose gases to directly observe both hydrodynamization and local prethermalization. After we apply a Bragg scattering pulse, hydrodynamization is evident in the fast redistribution of energy among distant momentum modes, which occurs on timescales associated with the Bragg peak energies. Local prethermalization can be seen in the slower redistribution of occupation among nearby momentum modes. We find that the timescale for local prethermalization in our system is inversely proportional to the momenta involved. During hydrodynamization and local prethermalization, existing theories cannot quantitatively model our experiment. Exact theoretical calculations in the Tonks-Girardeau limit12 show qualitatively similar features.

2.
Nature ; 599(7884): 211-215, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759361

RESUMEN

Quantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs)1-3. The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff4. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom-atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC-photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions5 to exotic 'fractonic' topological defects6 in the quantum regime.

3.
Proc Natl Acad Sci U S A ; 119(34): e2202823119, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969776

RESUMEN

We address spin transport in the easy-axis Heisenberg spin chain subject to different integrability-breaking perturbations. We find subdiffusive spin transport characterized by dynamical exponent z = 4 up to a timescale parametrically long in the anisotropy. In the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy, one eventually recovers diffusion at late times but with a diffusion constant independent of the strength of the perturbation and solely fixed by the value of the anisotropy. We provide numerical evidence for these findings, and we show how they can be understood in terms of the dynamical screening of the relevant quasiparticle excitations and effective dynamical constraints. Our results show that the diffusion constant of near-integrable diffusive spin chains is generically not perturbative in the integrability-breaking strength.

4.
Phys Rev Lett ; 132(4): 040403, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335340

RESUMEN

We explore the effects of spatial locality on the dynamics of random quantum systems subject to a Markovian noise. To this end, we study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance, with distinct exponents α_{H}, α_{L}. The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on α_{H} and α_{L}: a phase where the approach is asymptotically exponential as a result of a gap in the spectrum of the Lindblad superoperator that generates the dynamics, and two gapless phases with subexponential relaxation, distinguished by the manner in which the gap decreases with system size. Within perturbation theory, the phase boundaries in the (α_{H},α_{L}) plane differ for weak and strong decoherence, suggesting phase transitions as a function of noise strength. We identify nonperturbative effects that prevent such phase transitions in the thermodynamic limit.

5.
Phys Rev Lett ; 132(17): 176303, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728724

RESUMEN

Although integrable spin chains host only ballistically propagating particles, they can still feature diffusive charge transfer. This diffusive charge transfer originates from quasiparticle charge fluctuations inherited from the initial state's magnetization Gaussian fluctuations. We show that ensembles of initial states with quasi-long-range correlations lead to superdiffusive charge transfer with a tunable dynamical exponent. We substantiate our prediction with numerical simulations and discuss how finite time and finite size effects might cause deviations.

7.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493671

RESUMEN

We develop a formalism for computing the nonlinear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb-Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems.

8.
Rep Prog Phys ; 86(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645909

RESUMEN

Many experimentally relevant quantum spin chains are approximately integrable, and support long-lived quasiparticle excitations. A canonical example of integrable model of quantum magnetism is the XXZ spin chain, for which energy spreads ballistically, but, surprisingly, spin transport can be diffusive or superdiffusive. We review the transport properties of this model using an intuitive quasiparticle picture that relies on the recently introduced framework of generalized hydrodynamics. We discuss how anomalous linear response properties emerge from hierarchies of quasiparticles both in integrable and near-integrable limits, with an emphasis on the role of hydrodynamic fluctuations. We also comment on recent developments including non-linear response, full-counting statistics and far-from-equilibrium transport. We provide an overview of recent numerical and experimental results on transport in XXZ spin chains.

9.
Phys Rev Lett ; 130(4): 046001, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763442

RESUMEN

We introduce and explore an interacting integrable cellular automaton, the Fredkin staircase, that lies outside the existing classification of such automata, and has a structure that seems to lie beyond that of any existing Bethe-solvable model. The Fredkin staircase has two families of ballistically propagating quasiparticles, each with infinitely many species. Despite the presence of ballistic quasiparticles, charge transport is diffusive in the dc limit, albeit with a highly non-Gaussian dynamic structure factor. Remarkably, this model exhibits persistent temporal oscillations of the current, leading to a delta-function singularity (Drude peak) in the ac conductivity at nonzero frequency. We analytically construct an extensive set of operators that anticommute with the time-evolution operator; the existence of these operators both demonstrates the integrability of the model and allows us to lower bound the weight of this finite-frequency singularity.

10.
Phys Rev Lett ; 130(3): 030401, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763393

RESUMEN

Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled chains. In these systems, there is a natural separation of scales between the strong intrachain interactions and the weak interchain coupling. When the intrachain interactions are integrable, weak interchain couplings play a crucial part in thermalizing the system. Here, we develop a Boltzmann-equation formalism involving a collision integral that is asymptotically exact for any interacting integrable system, and apply it to develop a quantitative theory of relaxation in coupled Bose gases in the experimentally relevant Newton's cradle setup. We find that relaxation involves a broad spectrum of timescales. We provide evidence that the Markov process governing relaxation at late times is gapless; thus, the approach to equilibrium is generally nonexponential, even for spatially uniform perturbations.

11.
Phys Rev Lett ; 131(19): 197102, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000404

RESUMEN

Finite temperature spin transport in integrable isotropic spin chains is known to be superdiffusive, with dynamical spin correlations that are conjectured to fall into the Kardar-Parisi-Zhang (KPZ) universality class. However, integrable spin chains have time-reversal and parity symmetries that are absent from the KPZ (Kardar-Parisi-Zhang) or stochastic Burgers equation, which force higher-order spin fluctuations to deviate from standard KPZ predictions. We put forward a nonlinear fluctuating hydrodynamic theory consisting of two coupled stochastic modes: the local spin magnetization and its effective velocity. Our theory fully explains the emergence of anomalous spin dynamics in isotropic chains: it predicts KPZ scaling for the spin structure factor but with a symmetric, quasi-Gaussian, distribution of spin fluctuations. We substantiate our results using matrix-product states calculations.

12.
Phys Rev Lett ; 131(21): 210402, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072585

RESUMEN

We investigate the full counting statistics of charge transport in U(1)-symmetric random unitary circuits. We consider an initial mixed state prepared with a chemical potential imbalance between the left and right halves of the system and study the fluctuations of the charge transferred across the central bond in typical circuits. Using an effective replica statistical mechanics model and a mapping onto an emergent classical stochastic process valid at large on-site Hilbert space dimension, we show that charge transfer fluctuations approach those of the symmetric exclusion process at long times, with subleading t^{-1/2} quantum corrections. We discuss our results in the context of fluctuating hydrodynamics and macroscopic fluctuation theory of classical nonequilibrium systems and check our predictions against direct matrix-product state calculations.

13.
Phys Rev Lett ; 131(25): 256505, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181371

RESUMEN

We demonstrate that nonlinear response functions in many-body systems carry a sharp signature of interactions between gapped low-energy quasiparticles. Such interactions are challenging to deduce from linear response measurements. The signature takes the form of a divergent-in-time contribution to the response-linear in time in the case when quasiparticles propagate ballistically-that is absent for free bosonic excitations. We give a physically transparent semiclassical picture of this singular behavior. While the semiclassical picture applies to a broad class of systems we benchmark it in two simple models: in the Ising chain using a form-factor expansion, and in a nonintegrable model-the spin-1 Affleck-Kennedy-Lieb-Tasaki chain-using time-dependent density matrix renormalization group simulations. We comment on extensions of these results to finite temperatures.

14.
Phys Rev Lett ; 129(20): 200602, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461989

RESUMEN

We consider monitored quantum systems with a global conserved charge, and ask how efficiently an observer ("eavesdropper") can learn the global charge of such systems from local projective measurements. We find phase transitions as a function of the measurement rate, depending on how much information about the quantum dynamics the eavesdropper has access to. For random unitary circuits with U(1) symmetry, we present an optimal classical classifier to reconstruct the global charge from local measurement outcomes only. We demonstrate the existence of phase transitions in the performance of this classifier in the thermodynamic limit. We also study numerically improved classifiers by including some knowledge about the unitary gates pattern.

15.
Phys Rev Lett ; 129(12): 120604, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179163

RESUMEN

Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling. MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order, but rather by the nonequilibrium dynamics and steady-state distribution of charge fluctuations. These include a charge-fuzzy phase in which charge information is rapidly scrambled leading to slowly decaying spatial fluctuations of charge in the steady state, and a charge-sharp phase in which measurements collapse quantum fluctuations of charge without destroying the volume-law entanglement of neutral degrees of freedom. By taking a continuous-time, weak-measurement limit, we construct a controlled replica field theory description of these phases and their intervening charge-sharpening transition in one spatial dimension. We find that the charge fuzzy phase is a critical phase with continuously evolving critical exponents that terminates in a modified Kosterlitz-Thouless transition to the short-range correlated charge-sharp phase. We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations, and discuss generalizations to higher dimensions.

16.
Proc Natl Acad Sci U S A ; 116(33): 16250-16255, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31363047

RESUMEN

We compute the spin-structure factor of XXZ spin chains in the Heisenberg and gapped (Ising) regimes in the high-temperature limit for nonzero magnetization, within the framework of generalized hydrodynamics, including diffusive corrections. The structure factor shows a hierarchy of timescales in the gapped phase, owing to s-spin magnon bound states ("strings") of various sizes. Although short strings move ballistically, long strings move primarily diffusively as a result of their collisions with short strings. The interplay between these effects gives rise to anomalous power-law decay of the spin-structure factor, with continuously varying exponents, at any fixed separation in the late-time limit. We elucidate the cross-over to diffusion (in the gapped phase) and to superdiffusion (at the isotropic point) in the half-filling limit. We verify our results via extensive matrix product operator calculations.

17.
Phys Rev Lett ; 126(17): 170503, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988446

RESUMEN

A quantum system subject to continuous measurement and postselection evolves according to a non-Hermitian Hamiltonian. We show that, as one increases the strength of postselection, this non-Hermitian Hamiltonian can undergo a spectral phase transition. On one side of this phase transition (for weak postselection), an initially mixed density matrix remains mixed at all times, and an initially unentangled state develops volume-law entanglement; on the other side, an arbitrary initial state approaches a unique pure state with low entanglement. We identify this transition with an exceptional point in the spectrum of the non-Hermitian Hamiltonian, at which PT symmetry is spontaneously broken. We characterize the transition as well as the nontrivial steady state that emerges at late times in the mixed phase using exact diagonalization and an approximate, analytically tractable mean-field theory; these methods yield consistent conclusions.

18.
Phys Rev Lett ; 126(22): 227202, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34152181

RESUMEN

We explore the finite-temperature dynamics of the quasi-1D orbital compass and plaquette Ising models. We map these systems onto a model of free fermions coupled to strictly localized spin-1/2 degrees of freedom. At finite temperature, the localized degrees of freedom act as emergent disorder and localize the fermions. Although the model can be analyzed using free-fermion techniques, it has dynamical signatures in common with typical many-body localized systems: Starting from generic initial states, entanglement grows logarithmically; in addition, equilibrium dynamical correlation functions decay with an exponent that varies continuously with temperature and model parameters. These quasi-1D models offer an experimentally realizable setting in which natural dynamical probes show signatures of disorder-free many-body localization.

19.
Phys Rev Lett ; 127(5): 057201, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397245

RESUMEN

Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with non-Abelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived and give divergent contributions to the low-frequency conductivity σ(ω), even in systems that are not perfectly integrable. We find, perturbatively, that σ(ω)∼ω^{-1/3} for translation-invariant static perturbations that conserve energy and σ(ω)∼|logω| for noisy perturbations. The (presumable) crossover to regular diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking perturbations that break the non-Abelian symmetry yield conventional diffusion. Numerical evidence supports the distinction between these two classes of perturbations.

20.
Phys Rev Lett ; 125(26): 265702, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449710

RESUMEN

Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic q-state Potts model in 2+1D. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of q, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be ν=1, saturating a modified version of the Harris-Luck criterion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA