Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 340, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039511

RESUMEN

The Southern Ocean between 30°S and 55°S is a major sink of excess heat and anthropogenic carbon, but model projections of these sinks remain highly uncertain. Reducing such uncertainties is required to effectively guide the development of climate mitigation policies for meeting the ambitious climate targets of the Paris Agreement. Here, we show that the large spread in the projections of future excess heat uptake efficiency and cumulative anthropogenic carbon uptake in this region are strongly linked to the models' contemporary stratification. This relationship is robust across two generations of Earth system models and is used to reduce the uncertainty of future estimates of the cumulative anthropogenic carbon uptake by up to 53% and the excess heat uptake efficiency by 28%. Our results highlight that, for this region, an improved representation of stratification in Earth system models is key to constrain future carbon budgets and climate change projections.

2.
Nat Commun ; 13(1): 1095, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232955

RESUMEN

It is well established that a collapse or strong reduction of the Atlantic meridional overturning circulation (AMOC) would substantially cool the northern high latitudes. Here we show that there is a possibility that such cooling could be amplified under deliberate CO2 removal and result in a temporary undershoot of a targeted temperature level. We find this behaviour in Earth system models that show a strong AMOC decline in response to anthropogenic forcing. Idealized simulations of CO2 removal with one of these models indicate that the timing of negative emissions relative to AMOC decline and recovery is key in setting the strength of the temporary cooling. We show that the pronounced temperature-fluctuations at high northern latitudes found in these simulations would entail considerable consequences for sea-ice and permafrost extent as well as for high latitude ecosystems.

3.
Proc Math Phys Eng Sci ; 476(2237): 20190769, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32518503

RESUMEN

Surface ocean biogeochemistry and photochemistry regulate ocean-atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA