Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 202-215.e14, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204102

RESUMEN

Despite the worldwide success of vaccination, newborns remain vulnerable to infections. While neonatal vaccination has been hampered by maternal antibody-mediated dampening of immune responses, enhanced regulatory and tolerogenic mechanisms, and immune system immaturity, maternal pre-natal immunization aims to boost neonatal immunity via antibody transfer to the fetus. However, emerging data suggest that antibodies are not transferred equally across the placenta. To understand this, we used systems serology to define Fc features associated with antibody transfer. The Fc-profile of neonatal and maternal antibodies differed, skewed toward natural killer (NK) cell-activating antibodies. This selective transfer was linked to digalactosylated Fc-glycans that selectively bind FcRn and FCGR3A, resulting in transfer of antibodies able to efficiently leverage innate immune cells present at birth. Given emerging data that vaccination may direct antibody glycosylation, our study provides insights for the development of next-generation maternal vaccines designed to elicit antibodies that will most effectively aid neonates.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/metabolismo , Placenta/metabolismo , Polisacáridos/metabolismo , Receptores Fc/inmunología , Receptores Fc/metabolismo , Adolescente , Adulto , Bélgica , Degranulación de la Célula , Estudios de Cohortes , Femenino , Glicosilación , Humanos , Recién Nacido , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Masculino , Embarazo , Receptores de IgG/metabolismo , Células THP-1 , Estados Unidos , Vacunación , Adulto Joven
2.
Cell ; 166(4): 1016-1027, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27475895

RESUMEN

Zika virus (ZIKV) infection during pregnancy has emerged as a global public health problem because of its ability to cause severe congenital disease. Here, we developed six mouse monoclonal antibodies (mAbs) against ZIKV including four (ZV-48, ZV-54, ZV-64, and ZV-67) that were ZIKV specific and neutralized infection of African, Asian, and American strains to varying degrees. X-ray crystallographic and competition binding analyses of Fab fragments and scFvs defined three spatially distinct epitopes in DIII of the envelope protein corresponding to the lateral ridge (ZV-54 and ZV-67), C-C' loop (ZV-48 and ZV-64), and ABDE sheet (ZV-2) regions. In vivo passive transfer studies revealed protective activity of DIII-lateral ridge specific neutralizing mAbs in a mouse model of ZIKV infection. Our results suggest that DIII is targeted by multiple type-specific antibodies with distinct neutralizing activity, which provides a path for developing prophylactic antibodies for use in pregnancy or designing epitope-specific vaccines against ZIKV.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Proteínas del Envoltorio Viral/química , Virus Zika/química , Virus Zika/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Mapeo Epitopo , Epítopos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Virus Zika/clasificación , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
3.
Nature ; 594(7862): 253-258, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33873199

RESUMEN

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas de Subunidad/inmunología , Compuestos de Alumbre , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , COVID-19/virología , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Modelos Animales de Enfermedad , Inmunidad Celular , Inmunidad Humoral , Macaca mulatta/inmunología , Masculino , Oligodesoxirribonucleótidos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Escualeno
4.
PLoS Biol ; 20(5): e3001609, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512013

RESUMEN

Despite the rapid creation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines, the precise correlates of immunity against severe Coronavirus Disease 2019 (COVID-19) are still unknown. Neutralizing antibodies represent a robust surrogate of protection in early Phase III studies, but vaccines provide protection prior to the evolution of neutralization, vaccines provide protection against variants that evade neutralization, and vaccines continue to provide protection against disease severity in the setting of waning neutralizing titers. Thus, in this study, using an Ad26.CoV2.S dose-down approach in nonhuman primates (NHPs), the role of neutralization, Fc effector function, and T-cell immunity were collectively probed against infection as well as against viral control. While dosing-down minimally impacted neutralizing and binding antibody titers, Fc receptor binding and functional antibody levels were induced in a highly dose-dependent manner. Neutralizing antibody and Fc receptor binding titers, but minimally T cells, were linked to the prevention of transmission. Conversely, Fc receptor binding/function and T cells were linked to antiviral control, with a minimal role for neutralization. These data point to dichotomous roles of neutralization and T-cell function in protection against transmission and disease severity and a continuous role for Fc effector function as a correlate of immunity key to halting and controlling SARS-CoV-2 and emerging variants.


Asunto(s)
COVID-19 , Ad26COVS1 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Primates , Receptores Fc , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
J Infect Dis ; 226(4): 738-750, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35417540

RESUMEN

The central nervous system (CNS) has emerged as a critical HIV reservoir. Thus, interventions aimed at controlling and eliminating HIV must include CNS-targeted strategies. Given the inaccessibility of the brain, efforts have focused on cerebrospinal fluid (CSF), aimed at defining biomarkers of HIV-disease in the CNS, including HIV-specific antibodies. However, how antibodies traffic between the blood and CNS, and whether specific antibody profiles track with HIV-associated neurocognitive disorders (HAND) remains unclear. Here, we comprehensively profiled HIV-specific antibodies across plasma and CSF from 20 antiretroviral therapy (ART) naive or treated persons with HIV. CSF was populated by IgG1 and IgG3 antibodies, with reduced Fc-effector profiles. While ART improved plasma antibody functional coordination, CSF profiles were unaffected by ART and were unrelated to HAND severity. These data point to a functional sieving of antibodies across the blood-brain barrier, providing previously unappreciated insights for the development of next-generation therapeutics targeting the CNS reservoir.


Asunto(s)
Infecciones por VIH , VIH-1 , Sistema Nervioso Central , Anticuerpos Anti-VIH , Humanos , Trastornos Neurocognitivos/complicaciones
6.
Nature ; 540(7633): 438-442, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798603

RESUMEN

Infection of pregnant women with Zika virus (ZIKV) can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was caused by a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.


Asunto(s)
Testículo/patología , Testículo/virología , Infección por el Virus Zika/patología , Virus Zika/patogenicidad , Animales , Muerte Celular , Virus del Dengue/fisiología , Epidídimo/patología , Epidídimo/virología , Humanos , Inhibinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oligospermia/patología , Oligospermia/virología , Túbulos Seminíferos/patología , Túbulos Seminíferos/virología , Células de Sertoli/virología , Espermatocitos/virología , Espermatogonias/virología , Testosterona/metabolismo , Factores de Tiempo
7.
Nature ; 535(7610): 164-8, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27383988

RESUMEN

Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.


Asunto(s)
Sistemas CRISPR-Cas/genética , Flavivirus/fisiología , Genoma Humano/genética , Factores Celulares Derivados del Huésped/genética , Señales de Clasificación de Proteína/fisiología , Animales , Línea Celular , Drosophila/citología , Drosophila/genética , Drosophila/virología , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Femenino , Flavivirus/metabolismo , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/virología , Glicosilación , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/genética , Terapia Molecular Dirigida , Transporte de Proteínas/genética , Proteolisis , Reproducibilidad de los Resultados , Serina Endopeptidasas/genética , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo
8.
J Virol ; 90(18): 8212-25, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27384652

RESUMEN

UNLABELLED: The interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance of Ifitm3 in vivo in restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice. Ifitm3(-/-) mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this, Ifitm3(-/-) fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infected Ifitm3(-/-) mice showed decreases in the total number of B cells, CD4(+) T cells, and antigen-specific CD8(+) T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells. IMPORTANCE: As part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact of IFITM genes on viral pathogenesis in vivo In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion of Ifitm3 Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana/metabolismo , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/patología , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/patogenicidad , Estructuras Animales/virología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Fibroblastos/inmunología , Fibroblastos/virología , Prueba de Complementación Genética , Predisposición Genética a la Enfermedad , Ratones , Ratones Noqueados , Análisis de Supervivencia , Carga Viral
9.
J Virol ; 90(19): 8780-94, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440901

RESUMEN

UNLABELLED: Host cells respond to viral infections by producing type I interferon (IFN), which induces the expression of hundreds of interferon-stimulated genes (ISGs). Although ISGs mediate a protective state against many pathogens, the antiviral functions of the majority of these genes have not been identified. IFITM3 is a small transmembrane ISG that restricts a broad range of viruses, including orthomyxoviruses, flaviviruses, filoviruses, and coronaviruses. Here, we show that alphavirus infection is increased in Ifitm3(-/-) and Ifitm locus deletion (Ifitm-del) fibroblasts and, reciprocally, reduced in fibroblasts transcomplemented with Ifitm3. Mechanistic studies showed that Ifitm3 did not affect viral binding or entry but inhibited pH-dependent fusion. In a murine model of chikungunya virus arthritis, Ifitm3(-/-) mice sustained greater joint swelling in the ipsilateral ankle at days 3 and 7 postinfection, and this correlated with higher levels of proinflammatory cytokines and viral burden. Flow cytometric analysis suggested that Ifitm3(-/-) macrophages from the spleen were infected at greater levels than observed in wild-type (WT) mice, results that were supported by experiments with Ifitm3(-/-) bone marrow-derived macrophages. Ifitm3(-/-) mice also were more susceptible than WT mice to lethal alphavirus infection with Venezuelan equine encephalitis virus, and this was associated with greater viral burden in multiple organs. Collectively, our data define an antiviral role for Ifitm3 in restricting infection of multiple alphaviruses. IMPORTANCE: The interferon-induced transmembrane protein 3 (IFITM3) inhibits infection of multiple families of viruses in cell culture. Compared to other viruses, much less is known about the antiviral effect of IFITM3 on alphaviruses. In this study, we characterized the antiviral activity of mouse Ifitm3 against arthritogenic and encephalitic alphaviruses using cells and animals with a targeted gene deletion of Ifitm3 as well as deficient cells transcomplemented with Ifitm3. Based on extensive virological analysis, we demonstrate greater levels of alphavirus infection and disease pathogenesis when Ifitm3 expression is absent. Our data establish an inhibitory role for Ifitm3 in controlling infection of alphaviruses.


Asunto(s)
Infecciones por Alphavirus/inmunología , Virus Chikungunya/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Factores Inmunológicos/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Alphavirus/patología , Infecciones por Alphavirus/virología , Animales , Virus Chikungunya/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/fisiología , Fibroblastos/inmunología , Fibroblastos/virología , Eliminación de Gen , Prueba de Complementación Genética , Factores Inmunológicos/deficiencia , Macrófagos/virología , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Carga Viral , Internalización del Virus/efectos de los fármacos
10.
J Virol ; 90(1): 189-205, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468541

RESUMEN

UNLABELLED: Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, Irf5, and Irf7 or in Irf5 alone. Deletion of Irf3, Irf5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of Irf5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected Irf5(-/-) mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in Irf5(-/-) mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE: Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3(-/-) Irf7(-/-) (DKO) mice infected with OROV was not as rapid or complete as observed in Ifnar(-/-) mice, indicating that other transcriptional factors associated with an IFN response contribute to antiviral immunity against OROV. Here, we evaluated bunyavirus replication, tissue tropism, and cytokine production in primary cells and mice lacking IRF-5. We demonstrate an important role for IRF-5 in preventing neuroinvasion and the ensuing encephalitis caused by OROV and LACV.


Asunto(s)
Infecciones por Bunyaviridae/inmunología , Sistema Nervioso Central/virología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/metabolismo , Orthobunyavirus/inmunología , Transducción de Señal , Animales , Apoptosis , Encéfalo/patología , Encéfalo/virología , Células Cultivadas , Células Dendríticas/virología , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Interferón Tipo I/metabolismo , Hígado/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Orthobunyavirus/fisiología , Bazo/virología , Análisis de Supervivencia , Replicación Viral
11.
PLoS Pathog ; 10(4): e1004086, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743949

RESUMEN

The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar-/- mice completely lacking type I IFN signaling. In Mavs-/-×Ifnar-/- myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar-/- and CD11c Cre+Ifnarf/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Sepsis/metabolismo , Transducción de Señal , Fiebre del Nilo Occidental/metabolismo , Virus del Nilo Occidental/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Complemento C3/genética , Complemento C3/metabolismo , Factor B del Complemento/genética , Factor B del Complemento/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Sepsis/genética , Sepsis/patología , Sepsis/virología , Fiebre del Nilo Occidental/genética , Fiebre del Nilo Occidental/patología
12.
Nature ; 461(7262): 411-4, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19727076

RESUMEN

The cascade comprising Raf, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) is a therapeutic target in human cancers with deregulated Ras signalling, which includes tumours that have inactivated the Nf1 tumour suppressor. Nf1 encodes neurofibromin, a GTPase-activating protein that terminates Ras signalling by stimulating hydrolysis of Ras-GTP. We compared the effects of inhibitors of MEK in a myeloproliferative disorder (MPD) initiated by inactivating Nf1 in mouse bone marrow and in acute myeloid leukaemias (AMLs) in which cooperating mutations were induced by retroviral insertional mutagenesis. Here we show that MEK inhibitors are ineffective in MPD, but induce objective regression of many Nf1-deficient AMLs. Drug resistance developed because of outgrowth of AML clones that were present before treatment. We cloned clone-specific retroviral integrations to identify candidate resistance genes including Rasgrp1, Rasgrp4 and Mapk14, which encodes p38alpha. Functional analysis implicated increased RasGRP1 levels and reduced p38 kinase activity in resistance to MEK inhibitors. This approach represents a robust strategy for identifying genes and pathways that modulate how primary cancer cells respond to targeted therapeutics and for probing mechanisms of de novo and acquired resistance.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Benzamidas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Genes ras , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Ratones , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas ras/genética
13.
Phys Rev E ; 109(3-1): 034902, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632820

RESUMEN

From colloid suspension to particle aggregation in protoplanetary formation, electrostatic attraction and repulsion between particles is a key mechanism behind the aggregation and clustering of particles. Although most studies have focused on canonical spherical particles, it remains unclear how nonspherical and rough dielectric particles interact and whether the complicated interplay between roughness and charge distribution affects their force couplings. Here a boundary-element method model was leveraged to study electrostatic interactions between charged dielectric particles with modular, axisymmetric surface features. Charge accumulation at convex surface asperities decreases the strength of electrostatic interactions between particles, and the sensitivity of the electrostatic force to the particle surface roughness and orientation is especially apparent at small particle separations. Surface interactions between the particle near-contact regions were isolated to determine the degree that near-contact interactions dictate the relationship between the net electrostatic force and the particle roughness and orientation. A correction factor ΔF is introduced to recover higher order dielectric effects from a low order analytical model. Finally, implications of surface charge asymmetries produced for different particle orientations and surface roughnesses on the long-standing problem of triboelectrification are discussed.

14.
Lancet HIV ; 11(6): e389-e405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816141

RESUMEN

BACKGROUND: Allogeneic haematopoietic stem-cell transplantation (allo-HSCT) markedly reduces HIV reservoirs, but the mechanisms by which this occurs are only partly understood. In this study, we aimed to describe the dynamics of virological and immunological markers of HIV persistence after allo-HSCT. METHODS: In this prospective observational cohort study, we analysed the viral reservoir and serological dynamics in IciStem cohort participants with HIV who had undergone allo-HSCT and were receiving antiretroviral therapy, ten of whom had received cells from donors with the CCR5Δ32 mutation. Participants from Belgium, Canada, Germany, Italy, the Netherlands, Spain, Switzerland, and the UK were included in the cohort both prospectively and retrospectively between June 1, 2014 and April 30, 2019. In the first 6 months after allo-HSCT, participants had monthly assessments, with annual assessments thereafter, with the protocol tailored to accommodate for the individual health status of each participant. HIV reservoirs were measured in blood and tissues and HIV-specific antibodies were measured in plasma. We used the Wilcoxon signed-rank test to compare data collected before and after allo-HSCT in participants for whom longitudinal data were available. When the paired test was not possible, we used the Mann-Whitney U test. We developed a mathematical model to study the factors influencing HIV reservoir reduction in people with HIV after allo-HSCT. FINDINGS: We included 30 people with HIV with haematological malignancies who received a transplant between Sept 1, 2009 and April 30, 2019 and were enrolled within the IciStem cohort and included in this analysis. HIV reservoirs in peripheral blood were reduced immediately after full donor chimerism was achieved, generally accompanied by undetectable HIV-DNA in bone marrow, ileum, lymph nodes, and cerebrospinal fluid, regardless of donor CCR5 genotype. HIV-specific antibody levels and functionality values declined more slowly than direct HIV reservoir values, decaying significantly only months after full donor chimerism. Mathematical modelling suggests that allogeneic immunity mediated by donor cells is the main viral reservoir depletion mechanism after massive reservoir reduction during conditioning chemotherapy before allo-HSCT (half-life of latently infected replication-competent cells decreased from 44 months to 1·5 months). INTERPRETATION: Our work provides, for the first time, data on the effects of allo-HSCT in the context of HIV infection. Additionally, we raise the question of which marker can serve as the last reporter of the residual viraemia, postulating that the absence of T-cell immune responses might be a more reliable marker than antibody decline after allo-HSCT. FUNDING: amfAR (American Foundation for AIDS Research; ARCHE Program), National Institutes of Health, National Institute of Allergy and Infectious Diseases, and Dutch Aidsfonds.


Asunto(s)
Infecciones por VIH , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Masculino , Estudios Prospectivos , Femenino , Adulto , Persona de Mediana Edad , VIH-1/inmunología , Trasplante Homólogo , Biomarcadores/sangre , Carga Viral , Anticuerpos Anti-VIH/sangre
15.
PNAS Nexus ; 2(9): pgad300, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37746330

RESUMEN

Extraterrestrial landing often requires firing a high-speed plume towards a planetary surface, and the resulting gas-granular interactions pose potential hazards to the lander. To investigate these jet-induced cratering dynamics, an experiment campaign covering a range of gas and granular properties relevant to the lunar and Martian environments was conducted in a large-scale vacuum chamber. Despite the variations in jet Mach number, mass flow rate, and composition of the granular phase investigated in this work, the observed time evolution of crater depth displays a consistent transition from an early-stage linear to a late-stage sublinear growth. To explain these scaling relations, a model that relates the kinetic energy gained by the particles per unit time to the power of the impinging jet is introduced. From this model, erosion rates and the critical depth at which the transition occurs can be extracted, and they are shown to depend on the gas impingement pressure, which was varied by changing ambient pressure, jet Mach number, mass flow rate, and nozzle height above the surface. These results highlight key mechanisms at work in the dynamics of plume-induced cratering and help to develop an understanding of optimal rocket engine firing times for future landings.

16.
Cell Rep Med ; 4(3): 100975, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36921600

RESUMEN

Under the ever-present threat of a pandemic influenza strain, the evolution of a broadly reactive, neutralizing, functional, humoral immune response may hold the key to protection against both circulating and emerging influenza strains. We apply a systems approach to profile hemagglutinin- and neuraminidase-specific humoral signatures that track with the evolution of broad immunity in a cohort of vaccinated individuals and validate these findings in a second longitudinal cohort. Multivariate analysis reveals the presence of a unique pre-existing Fcγ-receptor-binding antibody profile in individuals that evolved broadly reactive hemagglutination inhibition activity (HAI), marked by the presence of elevated levels of pre-existing FCGR2B-binding antibodies. Moreover, vaccination with FCGR2B-binding antibody-opsonized influenza results in enhanced antibody titers and HAI activity in a murine model. Together, these data suggest that pre-existing FCGR2B binding antibodies are a key correlate of the evolution of broadly protective influenza-specific antibodies, providing insight for the design of next-generation influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Gripe Humana/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Antivirales , Vacunación
17.
Cell Rep ; 42(11): 113292, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38007686

RESUMEN

The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.


Asunto(s)
COVID-19 , Vacunas , Animales , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Macaca , Formación de Anticuerpos , COVID-19/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes
18.
Lancet Microbe ; 4(4): e228-e235, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907197

RESUMEN

BACKGROUND: Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS: We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS: In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION: Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING: National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.


Asunto(s)
Cólera , Vibrio cholerae , Niño , Humanos , Cólera/epidemiología , Cólera/prevención & control , Anticuerpos Antibacterianos , Bangladesh/epidemiología , Diarrea/epidemiología
19.
mBio ; 13(1): e0214121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073738

RESUMEN

As public health guidelines throughout the world have relaxed in response to vaccination campaigns against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more infectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, reinfections have emerged across the globe, even among previously infected and vaccinated individuals. As such, the ability to detect reexposure to and reinfection by SARS-CoV-2 is a key component for global protection against this virus and, more importantly, against the potential emergence of vaccine escape mutations. Accordingly, there is a strong and continued need for the development and deployment of simple methods to detect emerging hot spots of reinfection to inform targeted pandemic response and containment, including targeted and specific deployment of vaccine booster campaigns. In this study, we identify simple, rapid immune biomarkers of reinfection in rhesus macaques, including IgG3 antibody levels against nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies, that are recapitulated in human reinfection cases. As such, this cross-species analysis underscores the potential utility of simple antibody titers and function as price-effective and scalable markers of reinfection to provide increased resolution and resilience against new outbreaks. IMPORTANCE As public health and social distancing guidelines loosen in the setting of waning global natural and vaccine immunity, a deeper understanding of the immunological response to reexposure and reinfection to this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-specific biomarkers of reexposure and reinfection, however, could significantly accelerate our capacity to monitor the spread of the virus through naive and experienced hosts, providing key insights into mechanisms of disease attenuation. Using a nonhuman primate model of controlled SARS-CoV-2 reexposure, we deeply probed the humoral immune response following rechallenge with various doses of viral inocula. We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding domain of the spike protein of SARS-CoV-2 (RBD), IgG3 to the nucleocapsid protein (N), and FcγR2A receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from reexposure and reinfection in monkeys but also were recapitulated in a sequencing-confirmed reinfection patient and in a cohort of putatively reinfected humans that evolved a PCR-positive test in spite of preexisting seropositivity. As such, this cross-species analysis using a controlled primate model and human cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection and reexposure.


Asunto(s)
COVID-19 , Reinfección , Animales , Humanos , Macaca mulatta , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
20.
mBio ; 12(3)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006651

RESUMEN

The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection.IMPORTANCE Hospital-acquired infections account for 2 billion dollars annually in increased health care expenses and cause more than 100,000 deaths in the United States alone. Enterococci are the second leading cause of hospital-acquired infections. They form biofilms at surgical sites and are often associated with infections of the urinary tract following catheterization. Nutrient uptake and growth are key factors that influence their ability to cause disease. Our research identified a large set of genes that illuminate nutrient uptake pathways in enterococci. Perturbation of the metabolic circuit reduces virulence in a rabbit endocarditis model, as well as in catheter-associated urinary tract infection in mice. Targeting metabolic pathways that are important in infection may lead to new treatments against multidrug-resistant enterococcal infections.


Asunto(s)
Proteínas Bacterianas/genética , Carbono/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Expresión Génica , Factor sigma/genética , Animales , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Conejos , Factor sigma/clasificación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA