Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 47(22): 6005-6008, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219158

RESUMEN

Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 µL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.


Asunto(s)
Neoplasias , Neutropenia , Humanos , Microscopía , Neutropenia/diagnóstico , Recuento de Leucocitos , Neutrófilos
2.
Biomed Opt Express ; 14(3): 1245-1255, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950241

RESUMEN

Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system.

3.
J Med Imaging (Bellingham) ; 8(Suppl 1): 010901, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33786335

RESUMEN

Purpose: The recent coronavirus disease 2019 (COVID-19) pandemic, which spread across the globe in a very short period of time, revealed that the transmission control of disease is a crucial step to prevent an outbreak and effective screening for viral infectious diseases is necessary. Since the severe acute respiratory syndrome (SARS) outbreak in 2003, infrared thermography (IRT) has been considered a gold standard method for screening febrile individuals at the time of pandemics. The objective of this review is to evaluate the efficacy of IRT for screening infectious diseases with specific applications to COVID-19. Approach: A literature review was performed in Google Scholar, PubMed, and ScienceDirect to search for studies evaluating IRT screening from 2002 to present using relevant keywords. Additional literature searches were done to evaluate IRT in comparison to traditional core body temperature measurements and assess the benefits of measuring additional vital signs for infectious disease screening. Results: Studies have reported on the unreliability of IRT due to poor sensitivity and specificity in detecting true core body temperature and its inability to identify asymptomatic carriers. Airport mass screening using IRT was conducted during occurrences of SARS, Dengue, Swine Flu, and Ebola with reported sensitivities as low as zero. Other studies reported that screening other vital signs such as heart and respiratory rates can lead to more robust methods for early infection detection. Conclusions: Studies evaluating IRT showed varied results in its efficacy for screening infectious diseases. This suggests the need to assess additional physiological parameters to increase the sensitivity and specificity of non-invasive biosensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA