Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem B ; 124(33): 7251-7257, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32697908

RESUMEN

Salts containing the merocyanine form of a pyridinium-fused spiropyran ([6'-MC]X; X = I and PF6) were prepared, and their crystal structures were determined. In addition, the photochromic properties of the salts were spectroscopically and kinetically investigated. In the solution state, the salts exhibited negative photochromism. Theoretical calculations revealed that the negative photochromism of the salt originates from the drastic stabilization of the merocyanine structure by electron delocalization of the pyridinium ring. Furthermore, the salts containing the merocyanine and spiropyran forms ([6'-MC]I, [6'-MC]PF6, and [6'-SP]PF6) were obtained by recrystallization. The crystals of [6'-SP]PF6 exhibited positive photochromism in the solid state; however, no photochromism was observed in the [6'-MC]X crystals.

2.
Dalton Trans ; 49(33): 11618-11627, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32779687

RESUMEN

The Hoveyda-Grubbs (HG) second-generation catalyst (HG-II), a Ru complex with a 2-isopropoxybenzylidene ligand, is extensively used for olefin metathesis, the rearrangement of carbon-carbon double bonds. A well-known strategy to control its complex reactivity is to modify the phenyl ring in the ligand, thereby directly influencing the coordination of the phenolic oxygen to the metal center. We, herein, report that a functional group attached to the phenolic moiety in the 2-alkoxybenzylidene ligand can indirectly affect the reactivities of HG-type complexes. In this work, the ligand exchange reactions between HG-II and phenolic moiety-modified 2-alkoxybenzylidene ligands are useful for evaluating the structural effects of the ligands. Specifically, an ethylene amide or an ester group at the terminal phenolic moiety in the benzylidene ligand was found to influence the relative stabilities of HG-type complexes compared to that of the HG-II complex. The structural analyses proved that the observed effects of the functional groups on the complex stabilities originate from the interactions with a chlorido ligand in HG-type complexes without changes in coordination fashions at the metal centers. It was found that the outer-sphere interactions also influence the catalytic activities of HG-type complexes, namely, the properties of HG-type complexes can be controlled by outer-sphere structural factors toward the metal center (i.e., "the second-coordination sphere effect"). In the design of functionalized HG-type complexes, the outer-sphere structural effects need to be considered in addition to the optimization of the metal coordination site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA