Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 117(5): 1614-1634, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047591

RESUMEN

Ribosome profiling (Ribo-seq) is a powerful method for the deep analysis of translation mechanisms and regulatory circuits during gene expression. Extraction and sequencing of ribosome-protected fragments (RPFs) and parallel RNA-seq yields genome-wide insight into translational dynamics and post-transcriptional control of gene expression. Here, we provide details on the Ribo-seq method and the subsequent analysis with the unicellular model alga Chlamydomonas reinhardtii (Chlamydomonas) for generating high-resolution data covering more than 10 000 different transcripts. Detailed analysis of the ribosomal offsets on transcripts uncovers presumable transition states during translocation of elongating ribosomes within the 5' and 3' sections of transcripts and characteristics of eukaryotic translation termination, which are fundamentally distinct for chloroplast translation. In chloroplasts, a heterogeneous RPF size distribution along the coding sequence indicates specific regulatory phases during protein synthesis. For example, local accumulation of small RPFs correlates with local slowdown of psbA translation, possibly uncovering an uncharacterized regulatory step during PsbA/D1 synthesis. Further analyses of RPF distribution along specific cytosolic transcripts revealed characteristic patterns of translation elongation exemplified for the major light-harvesting complex proteins, LHCs. By providing high-quality datasets for all subcellular genomes and attaching our data to the Chlamydomonas reference genome, we aim to make ribosome profiles easily accessible for the broad research community. The data can be browsed without advanced bioinformatic background knowledge for translation output levels of specific genes and their splice variants and for monitoring genome annotation.


Asunto(s)
Chlamydomonas , Perfilado de Ribosomas , Chlamydomonas/genética , Chlamydomonas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Perfilación de la Expresión Génica
2.
Nucleic Acids Res ; 49(1): 400-415, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330923

RESUMEN

In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ribosomas/metabolismo , Espectrometría de Masas en Tándem/métodos , Acetilación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fraccionamiento Celular/métodos , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Separación Inmunomagnética , Espectrometría de Masas , Modelos Moleculares , Acetiltransferasas N-Terminal/aislamiento & purificación , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
3.
Plant Physiol ; 179(3): 1093-1110, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651302

RESUMEN

Biochemical processes in chloroplasts are important for virtually all life forms. Tight regulation of protein homeostasis and the coordinated assembly of protein complexes, composed of both imported and locally synthesized subunits, are vital to plastid functionality. Protein biogenesis requires the action of cotranslationally acting molecular chaperones. One such chaperone is trigger factor (TF), which is known to cotranslationally bind most newly synthesized proteins in bacteria, thereby assisting their correct folding and maturation. However, how these processes are regulated in chloroplasts remains poorly understood. We report here functional investigation of chloroplast-localized TF (TIG1) in the green alga (Chlamydomonas reinhardtii) and the vascular land plant Arabidopsis (Arabidopsis thaliana). We show that chloroplastic TIG1 evolved as a specialized chaperone. Unlike other plastidic chaperones that are functionally interchangeable with their prokaryotic counterpart, TIG1 was not able to complement the broadly acting ortholog in Escherichia coli. Whereas general chaperone properties such as the prevention of aggregates or substrate recognition seems to be conserved between bacterial and plastidic TFs, plant TIG1s differed by associating with only a relatively small population of translating ribosomes. Furthermore, a reduction of plastidic TIG1 levels leads to deregulated protein biogenesis at the expense of increased translation, thereby disrupting the chloroplast energy household. This suggests a central role of TIG1 in protein biogenesis in the chloroplast.


Asunto(s)
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/fisiología , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas
4.
Nat Commun ; 12(1): 5576, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552071

RESUMEN

Chromosome loss that results in monosomy is detrimental to viability, yet it is frequently observed in cancers. How cancers survive with monosomy is unknown. Using p53-deficient monosomic cell lines, we find that chromosome loss impairs proliferation and genomic stability. Transcriptome and proteome analysis demonstrates reduced expression of genes encoded on the monosomes, which is partially compensated in some cases. Monosomy also induces global changes in gene expression. Pathway enrichment analysis reveals that genes involved in ribosome biogenesis and translation are downregulated in all monosomic cells analyzed. Consistently, monosomies display defects in protein synthesis and ribosome assembly. We further show that monosomies are incompatible with p53 expression, likely due to defects in ribosome biogenesis. Accordingly, impaired ribosome biogenesis and p53 inactivation are associated with monosomy in cancer. Our systematic study of monosomy in human cells explains why monosomy is so detrimental and reveals the importance of p53 for monosomy occurrence in cancer.


Asunto(s)
Monosomía/patología , Línea Celular , Proliferación Celular , Supervivencia Celular , Expresión Génica , Regulación de la Expresión Génica , Genoma Humano/genética , Inestabilidad Genómica , Humanos , Monosomía/genética , Neoplasias/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Nat Plants ; 4(8): 564-575, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30061751

RESUMEN

Chloroplast gene expression is a fascinating and highly regulated process, which was mainly studied on specific genes in a few model organisms including the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii) and the embryophyte (land) plants tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). However, a direct plastid genome-wide interspecies comparison of chloroplast gene expression that includes translation was missing. We adapted a targeted chloroplast ribosome profiling approach to quantitatively compare RNA abundance and translation output between Chlamydomonas, tobacco and Arabidopsis. The re-analysis of established chloroplast mutants confirmed the capability of the approach by detecting known as well as previously undetected translation defects (including the potential photosystem II assembly-dependent regulation of PsbH). Systematic comparison of the algal and land plant wild-type gene expression showed that, for most genes, the steady-state translation output is highly conserved among the three species, while the levels of transcript accumulation are more distinct. Whereas in Chlamydomonas transcript accumulation and translation output are closely balanced, this correlation is less obvious in embryophytes, indicating more pronounced translational regulation. Altogether, this suggests that green algae and land plants evolved different strategies to achieve conserved levels of protein synthesis.


Asunto(s)
Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Nicotiana/genética , ARN de Planta/metabolismo , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Secuencia Conservada , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ribosomas/fisiología , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA