RESUMEN
Advances in biosciences, chemistry, technology, and computer sciences have resulted in the unparalleled development of candidate New Approach Methodologies over the last few years. Many of these are potentially invaluable in the safety assessment of chemicals, but very few have been adopted for regulatory decision making. There is an immediate opportunity to use NAMs in safety assessment where the vision is to be able to predict risk more rapidly, accurately, and efficiently to further assure consumer safety. In order to achieve this, the UK Food Standards Agency (FSA) and the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) have developed a roadmap towards acceptance and integration of these new approach methodologies into safety and risk assessments for regulatory decision making. The roadmap provides a UK blueprint for the transition of NAMs from the research laboratory to their use in regulatory decision making. This will require close collaboration across disciplines (chemists, toxicologists, informaticians, risk assessors and others), and across chemical sectors, to develop, verify and utilise appropriate models. Linking up internationally, and harmonization will be fundamental.
Asunto(s)
Seguridad de Productos para el Consumidor , Inocuidad de los Alimentos , Medición de Riesgo/métodos , Reino Unido , Humanos , Inocuidad de los Alimentos/métodos , Toma de Decisiones , Animales , Contaminación de AlimentosRESUMEN
BACKGROUND: Few methods are available for transparently combining different evidence streams for chemical risk assessment to reach an integrated conclusion on the probability of causation. Hence, the UK Committees on Toxicity (COT) and on Carcinogenicity (COC) have reviewed current practice and developed guidance on how to achieve this in a transparent manner, using graphical visualisation. METHODS/APPROACH: All lines of evidence, including toxicological, epidemiological, new approach methodologies, and mode of action should be considered, taking account of their strengths/weaknesses in their relative weighting towards a conclusion on the probability of causation. A qualitative estimate of the probability of causation is plotted for each line of evidence and a combined estimate provided. DISCUSSION/CONCLUSIONS: Guidance is provided on integration of multiple lines of evidence for causation, based on current best practice. Qualitative estimates of probability for each line of evidence are plotted graphically. This ensures a deliberative, consensus conclusion on likelihood of causation is reached. It also ensures clear communication of the influence of the different lines of evidence on the overall conclusion on causality. Issues on which advice from the respective Committees is sought varies considerably, hence the guidance is designed to be sufficiently flexible to meet this need.
Asunto(s)
Probabilidad , Medición de Riesgo , Humanos , Reino Unido , AnimalesRESUMEN
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Asunto(s)
Colorantes/efectos adversos , Exposición Dietética/efectos adversos , Nanopartículas/efectos adversos , Titanio/efectos adversos , Animales , Colorantes/química , Colorantes/farmacocinética , Humanos , Nanopartículas/química , Titanio/química , Titanio/farmacocinética , Pruebas de ToxicidadRESUMEN
The further optimization of consumer safety through risk assessment of chemicals present in food will require adaptability and flexibility to utilize the accelerating developments in safety science and technology. New Approach Methodologies (NAMs) are gaining traction as a systematic approach to support informed decision making in chemical risk assessment. The vision is to be able to predict risk more accurately, rapidly and efficiently. The opportunity exists now to use these approaches which requires a strategy to translate the science into future regulatory implementation. Here we discuss new insights obtained from three recent workshops on how to translate the science into future regulatory implementation. To assist the UK in this endeavor, the Food Standards Agency (FSA) and the scientific advisory committee on chemical toxicity (COT) have been developing a roadmap. In addition, we discuss how these new insights fit into the bigger picture of the new chemical landscape for better consumer safety and the importance of international harmonization.
RESUMEN
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant that can accumulate in the human body due to its long half-life. This substance has been associated with liver, pancreatic, testicular and breast cancers, liver steatosis and endocrine disruption. PFOA is a member of a large group of substances also known as "forever chemicals" and the vast majority of substances of this group lack toxicological data that would enable their effective risk assessment in terms of human health hazards. This study aimed to derive a health-based guidance value for PFOA intake (ng/kg BW/day) from in vitro transcriptomics data. To this end, we developed an in silico workflow comprising five components: (i) sourcing in vitro hepatic transcriptomics concentration-response data; (ii) deriving molecular points of departure using BMDExpress3 and performing pathway analysis using gene set enrichment analysis (GSEA) to identify the most sensitive molecular pathways to PFOA exposure; (iii) estimating freely-dissolved PFOA concentrations in vitro using a mass balance model; (iv) estimating in vivo doses by reverse dosimetry using a PBK model for PFOA as part of a quantitative in vitro to in vivo extrapolation (QIVIVE) algorithm; and (v) calculating a tolerable daily intake (TDI) for PFOA. Fourteen percent of interrogated genes exhibited in vitro concentration-response relationships. GSEA pathway enrichment analysis revealed that "fatty acid metabolism" was the most sensitive pathway to PFOA exposure. In vitro free PFOA concentrations were calculated to be 2.9% of the nominal applied concentrations, and these free concentrations were input into the QIVIVE workflow. Exposure doses for a virtual population of 3,000 individuals were estimated, from which a TDI of 0.15 ng/kg BW/day for PFOA was calculated using the benchmark dose modelling software, PROAST. This TDI is comparable to previously published values of 1.16, 0.69, and 0.86 ng/kg BW/day by the European Food Safety Authority. In conclusion, this study demonstrates the combined utility of an "omics"-derived molecular point of departure and in silico QIVIVE workflow for setting health-based guidance values in anticipation of the acceptance of in vitro concentration-response molecular measurements in chemical risk assessment.
RESUMEN
The food enzyme containing chymosin (EC 3.4.23.4) and pepsin (EC 3.4.23.1) is prepared from the abomasum of suckling calves, goats, lambs and buffaloes by Caglificio Clerici S.p.A. It is intended to be used in the production of cheese. As no concerns arise from the source of the food enzyme, from its manufacture and based on the history of safe use and consumption, the Panel considered that toxicological data were not required and no exposure assessment was necessary. The similarity of the amino acid sequences of the two proteins (chymosin and pepsin A) to those of known allergens was searched and two matches were found with respiratory allergens. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain AGN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used to prevent acrylamide formation in food processing. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.434 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this food enzyme as a suitable substitute for the asparaginase to be used in the toxicological studies, because the genetic differences between the production strains are not expected to result in a different toxigenic potential, and the raw materials and manufacturing processes of both food enzymes are comparable. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1038 mg TOS/kg bw per day, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 724. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase, EC 3.2.1.133) is produced with the genetically modified Bacillus subtilis strain BABSC by Advanced Enzyme Technologies Ltd. The requirements for the qualified presumption of safety (QPS) approach have not been met. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in baking processes and starch processing for the production of glucose syrups and other starch hydrolysates. Since residual amounts of total organic solids (TOS) are removed, dietary exposure was not calculated for starch processing for the production of glucose syrups and other starch hydrolysates. For baking processes, the dietary exposure was estimated to be up to 0.101 mg TOS/kg body weight per day in European populations. No toxicological studies were provided by the applicant. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. In the absence of appropriate data to fully characterise the production strain, the Panel was unable to conclude on the safety of the food enzyme under the intended conditions of use.
RESUMEN
The food enzyme endo-1,4-ß-xylanase (4-ß-d-xylan xylanohydrolase, EC 3.2.1.8) is produced with the genetically modified Bacillus velezensis strain AR-112 by AB Enzymes GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in baking processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.024 mg TOS/kg body weight (bw) per day in European populations. As the production strain B. velezensis strain AR-112 meets the requirements for the qualified presumption of safety (QPS) approach to safety assessment and no issue of concern arose from the production process, no toxicological data are required. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme containing cellulase (EC 3.2.1.4), endo-1,3(4)-ß-glucanase (EC 3.2.1.6) and endo-1,4-ß-xylanase (EC 3.2.1.8) is produced with the non-genetically modified Trichoderma reesei strain AR-256 by AB-Enzymes GmbH. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in seven food manufacturing processes. Subsequently, the applicant requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes: processing of cereals and other grains for the production of 1) baked products, 2) cereal-based products other than baked, 3) brewed products, 4) starch and gluten fractions, 5) distilled alcohol; processing of fruits and vegetables for the production of 6) wine and wine vinegar, 7) juices, 8) fruit and vegetable products other than juices and 9) fruit-derived distilled alcoholic beverages other than from grape. As the food enzyme-total organic solids (TOS) is removed from or not carried into the final foods in three food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining six processes. It was up to 4.049 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level (NOAEL) reported in the previous opinion (939 mg TOS/kg bw per day), the Panel derived a revised margin of exposure of at least 232. Based on the revised exposure calculation and the outcome of the previous evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme phosphoinositide phospholipase C (1-phosphatidyl-1D-myo-inositol-4,5-bisphosphate inositoltrisphosphohydrolase EC 3.1.4.11.) is produced with the genetically modified Pseudomonas fluorescens strain PIC by DSM Food specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of fats and oils for the production of refined edible fats and oils by degumming. Since residual amounts of the total organic solids are removed by the washing and purification steps applied during degumming, dietary exposure estimation and toxicity testing were considered unnecessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to include one additional process and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining seven processes. Dietary exposure was calculated to be up to 0.382 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in thirteen food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of fifteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining thirteen processes. Dietary exposure was calculated to be up to 35.251 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme α-l-rhamnosidase (α-l-rhamnoside rhamnohydrolase; EC 3.2.1.40) is produced with Penicillium adametzii strain AE-HP by Amano Enzymes Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in two food manufacturing processes. Subsequently, the applicant has requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.022 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level reported in the previous opinion (300 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 13,636. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.2) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-GT by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in five food manufacturing processes. Subsequently, the applicant requested to extend its use to thirteen additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eighteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining sixteen processes. Dietary exposure was calculated to be up to 0.678 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. The production strain meets the requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in 14 food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in three manufacturing processes, dietary exposure was calculated only for the remaining 11 food manufacturing processes in which the food enzyme-TOS is retained. It was estimated to be up to 35.251 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
RESUMEN
The food enzyme glucan 1,4-α-glucosidase (4-α-d-glucan glucohydrolase; EC 3.2.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-G by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant requested to extend its use to nine additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for uses in a total of 10 food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining eight processes. Dietary exposure was up to 0.424 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1868 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 4406. Based on the data provided for the previous evaluation and the margin of exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme ß-amylase (4-α-d-glucan maltohydrolase, EC 3.2.1.2) is produced with the non-genetically modified Bacillus flexus strain AE-BAF by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in three food manufacturing processes. Subsequently, the applicant requested to extend its use to four additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining six processes. The dietary exposure was estimated to be up to 0.247 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the dietary exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is produced with the non-genetically modified Mucor circinelloides strain AE-LMH by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in three food manufacturing processes. Subsequently, the applicant requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of five food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.845 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (784 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 928. Based on the data provided for the previous evaluation and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.
RESUMEN
The food enzyme peroxidase (phenolic donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) is produced with the genetically modified Aspergillus niger strain MOX by DSM Food Specialties B.V. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant requested to extend its use to include an additional process. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of two food manufacturing processes: processing of dairy products for the production of modified milk proteins and the production of plant-based analogues of milk and milk products. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.091 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (2162 mg TOS/kg bw per day), the Panel derived a margin of exposure (MoE) of at least 23,758. Based on the data provided for the previous evaluation and the revised MoE, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.