Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pediatr ; 243: 219-223, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953820

RESUMEN

Chromosomal microarray analysis (CMA) frequently yields inconclusive results. We reexamined inconclusive CMA results from 33 previously tested patients and reached a definitive diagnosis in 3 (9.1%) and identified the need for additional testing in 4 (12.1%). Reinterpretation may resolve inconclusive CMA results.


Asunto(s)
Cromosomas , Diagnóstico Prenatal , Niño , Aberraciones Cromosómicas , Femenino , Humanos , Análisis por Micromatrices/métodos , Embarazo , Diagnóstico Prenatal/métodos
2.
Pediatr Nephrol ; 37(6): 1415-1418, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34854955

RESUMEN

BACKGROUND: Cobalamin C (cblC), a vitamin B12 processing protein, plays a crucial role in metabolism for the conversion of homocysteine to methionine and methylmalonyl-CoA to succinyl-CoA. CblC deficiency, an inborn error of cobalamin processing, is a rare cause of atypical hemolytic-uremic syndrome (aHUS) and results in hyperhomocysteinemia and methylmalonic aciduria. Both substances are thought to contribute to thrombotic microangiopathy (TMA) in cblC deficiency patients. However, the roles of homocysteine and methylmalonic acid (MMA) in these patients remain unclear. We want to shed more light on the contributions of homocysteine and MMA levels as contributing factors for thrombotic microangiopathy (TMA)/aHUS by a follow-up of a cblC deficiency patient over 6 years. CASE DIAGNOSIS: A 27-day-old Hispanic female presented with abnormal C3-carnitine on her newborn screen, poor feeding, decreased activity, and oligouria. She was diagnosed with cblC deficiency after laboratory results revealed elevated serum homocysteine, and serum MMA along with genetic testing showing a homozygous pathogenic frameshift variant in MMACHC. The patient developed aHUS and acute kidney injury (AKI), which resolved after appropriate therapy. Over 6 years, she continued to have normal kidney function with no thrombocytopenia despite persistently elevated homocysteine and MMA levels. CONCLUSION: We question the roles of homocysteine and MMA as causative of aHUS/TMA in cblC deficiency as they remained elevated during follow-up but did not result in aHUS/TMA or AKI. Hyperhomocysteinemia and/or MMA caused by other metabolic diseases do not result in aHUS/TMA or AKI. This suggests that other nephrotoxic factors may trigger aHUS/TMA in cblC patients.


Asunto(s)
Lesión Renal Aguda , Síndrome Hemolítico Urémico Atípico , Hiperhomocisteinemia , Microangiopatías Trombóticas , Deficiencia de Vitamina B 12 , Lesión Renal Aguda/etiología , Errores Innatos del Metabolismo de los Aminoácidos , Síndrome Hemolítico Urémico Atípico/complicaciones , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/genética , Femenino , Homocisteína , Humanos , Hiperhomocisteinemia/complicaciones , Recién Nacido , Riñón/patología , Ácido Metilmalónico , Oxidorreductasas/genética , Microangiopatías Trombóticas/patología , Vitamina B 12 , Deficiencia de Vitamina B 12/complicaciones , Deficiencia de Vitamina B 12/diagnóstico
3.
Clin Chem ; 66(1): 199-206, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609854

RESUMEN

BACKGROUND: Exome sequencing has become a commonly used clinical diagnostic test. Multiple studies have examined the diagnostic utility and individual laboratory performance of exome testing; however, no previous study has surveyed and compared the data quality from multiple clinical laboratories. METHODS: We examined sequencing data from 36 clinical exome tests from 3 clinical laboratories. Exome data were compared in terms of overall characteristics and coverage of specific genes and nucleotide positions. The sets of genes examined included genes in Consensus Coding Sequence (CCDS) (n = 17723), a subset of genes clinically relevant to epilepsy (n = 108), and genes that are recommended for reporting of secondary findings (n = 57; excludes X-linked genes). RESULTS: The average exome nucleotide coverage (≥20×) of each laboratory varied at 96.49% (CV = 3%), 96.54% (CV = 1%), and 91.68% (CV = 4%), for laboratories A, B, and C, respectively. For CCDS genes, the average number of completely covered genes varied at 12184 (CV = 29%), 11687 (CV = 13%), and 5989 (CV = 37%), for laboratories A, B, and C, respectively. With smaller subsets of genes related to epilepsy and secondary findings, the CV revealed low consistency, with a maximum CV seen in laboratory C for both epilepsy genes (CV = 60%) and secondary findings genes (CV = 71%). CONCLUSIONS: Poor consistency in complete gene coverage was seen in the clinical exome laboratories surveyed. The degree of consistency varied widely between the laboratories.


Asunto(s)
Exoma/genética , Proteína BRCA1/genética , Epilepsia/genética , Epilepsia/patología , Exones , Guías como Asunto , Humanos , Laboratorios de Hospital/normas , Homólogo 1 de la Proteína MutL/genética , Secuenciación del Exoma
4.
J Pediatr ; 222: 180-185.e1, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32417076

RESUMEN

OBJECTIVE: To investigate the utility of a detailed medical history in the interpretation of chromosomal microarray results for pediatric patients with a constitutional disease. STUDY DESIGN: A retrospective review and reinterpretation of test results from chromosomal microarrays performed from 2011 to 2013. Previously reported genetic variants were reanalyzed after review of the patient's complete electronic medical record (cEMR). A 3-tier system was used for reclassification of variants: pathogenic or likely pathogenic (P/LP); variant of uncertain significance (VUS); or benign or likely benign (B/LB). RESULTS: Over an 18-month period, 998 patients with chromosomal microarray results were identified. The most common reasons for chromosomal microarray testing were developmental delay (n = 336), autism spectrum disorder (n = 241), and seizures (n = 143). Chromosomal microarray testing identified 1 or more variants in 48% (482 of 998) of patients; 516 patients had a negative report. For the 482 patients with variants, the original interpretations were composed of 19.3% P/LP (93 of 482), 44.8% VUS (216 of 482), and 35.9% B/LB (173 of 482) variants. After review of the cEMR, 34% of patient results (164 of 482) were changed in interpretation. One case changed from B/LB to VUS, 7 VUS were upgraded to P/LP, and 156 VUS were downgraded to B/LB. No P/LP variants had a change in interpretation. CONCLUSIONS: Overall, 16.4% (164 of 998) of patients with chromosomal microarray testing had a change in interpretation. Access to the patient's cEMR improves the interpretation of chromosomal microarrays by decreasing the number of uncertain (VUS) interpretations.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Cromosomas/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Anamnesis/métodos , Trastorno del Espectro Autista/genética , Niño , Femenino , Humanos , Masculino , Estudios Retrospectivos
5.
Am J Hum Genet ; 99(4): 934-941, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616479

RESUMEN

Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2ß, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay, intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogonadism as well as additional findings such as bone fusions. The variants, c.3380G>A (p.Arg1127Gln), c.3443G>T (p.Trp1148Leu), c.3518G>T (p.Arg1173Leu), and c.3008G>A, (p.Gly1003Asp) (GenBank: NM_001273.3), affect evolutionarily highly conserved residues and are predicted to be deleterious. Previous studies in yeast showed the equivalent Arg1127 and Trp1148 residues to be crucial for SNF2 function. Furthermore, mutations in the same positions were reported in malignant tumors, and a de novo missense substitution in an equivalent arginine residue in the C-terminal helicase domain of SMARCA4 is associated with Coffin Siris syndrome. Cell-based studies of the p.Arg1127Gln and p.Arg1173Leu mutants demonstrate normal localization to the nucleus and HDAC1 interaction. Based on these findings, the mutations potentially alter the complex activity but not its formation. This report provides evidence for the role of CHD4 in human development and expands an increasingly recognized group of Mendelian disorders involving chromatin remodeling and modification.


Asunto(s)
Adenosina Trifosfato/metabolismo , Autoantígenos/genética , Ensamble y Desensamble de Cromatina/genética , Discapacidad Intelectual/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mutación Missense/genética , Anomalías Múltiples/genética , Adolescente , Animales , Núcleo Celular/metabolismo , Niño , Preescolar , ADN Helicasas/genética , Discapacidades del Desarrollo/genética , Exoma/genética , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/genética , Pérdida Auditiva/genética , Histona Desacetilasa 1/metabolismo , Humanos , Masculino , Megalencefalia/genética , Ratones , Micrognatismo/genética , Cuello/anomalías , Proteínas Nucleares/genética , Síndrome , Factores de Transcripción/genética
6.
Cytogenet Genome Res ; 159(1): 19-25, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31487712

RESUMEN

The role of autosomal recessive (AR) variants in clinically heterogeneous conditions such as intellectual disability and developmental delay (ID/DD) has been difficult to uncover. Implication of causative pathogenic AR variants often requires investigation within large and consanguineous families, and/or identifying rare biallelic variants in affected individuals. Furthermore, detection of homozygous gene-level copy number variants during first-line genomic microarray testing in the pediatric population is a rare finding. We describe a 6.7-year-old male patient with ID/DD and a novel homozygous deletion involving the FRY gene identified by genomic SNP microarray. This deletion was observed within a large region of homozygosity on the long arm of chromosome 13 and in a background of increased low-level (2.6%) autosomal homozygosity, consistent with a reported common ancestry in the family. FRY encodes a protein that regulates cell cytoskeletal dynamics, functions in chromosomal alignment in mitosis in vitro, and has been shown to function in the nervous system in vivo. Homozygous mutation of FRY has been previously reported in 2 consanguineous families from studies of autosomal recessive ID in Middle Eastern and Northern African populations. This report provides additional supportive evidence that deleterious biallelic mutation of FRY is associated with ID/DD and illustrates the utility of genomic SNP microarray detection of low-level homozygosity.


Asunto(s)
Proteínas de Ciclo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Eliminación de Secuencia/genética , Secuencia de Bases/genética , Niño , Consanguinidad , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
7.
Mol Genet Metab ; 116(4): 269-74, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26527160

RESUMEN

BACKGROUND: The etiology of liver disease remains elusive in some adults presenting with severe hepatic dysfunction. METHODS AND RESULTS: Here we describe a woman of Pakistani descent who had elevated aminotransferases at age 23. She developed muscle weakness in her mid-20s, and was diagnosed with hepatocellular carcinoma at age 29. She died without a diagnosis at age 32 after having a liver transplant. Exome sequencing revealed that she was homozygous for a missense mutation (R49H) in AHCY, the gene encoding S-adenosylhomocysteine (SAH) hydrolase. SAH hydrolase catalyzes the final step in conversion of methionine to homocysteine and inactivating mutations in this enzyme cause a rare autosomal recessive disorder, SAH hydrolase deficiency, that typically presents in infancy. An asymptomatic 7-year old son of the proband is also homozygous for the AHCY-R49H mutation and has elevated serum aminotransferase levels, as well as markedly elevated serum levels of SAH, S-adenosylmethionine (SAM), and methionine, which are hallmarks of SAH hydrolase deficiency. CONCLUSION: This report reveals several new aspects of SAH hydrolase deficiency. Affected women with SAH hydrolase deficiency can give birth to healthy children. SAH hydrolase deficiency can remain asymptomatic in childhood, and the disorder can be associated with early onset hepatocellular carcinoma. The measurement of serum amino acids should be considered in patients with liver disease or hepatocellular carcinoma of unknown etiology.


Asunto(s)
Adenosilhomocisteinasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Carcinoma Hepatocelular/genética , Glicina N-Metiltransferasa/deficiencia , Neoplasias Hepáticas/genética , Mutación Missense , Adulto , Edad de Inicio , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/patología , Secuencia de Aminoácidos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Niño , Consanguinidad , Análisis Mutacional de ADN , Exoma , Femenino , Expresión Génica , Glicina N-Metiltransferasa/genética , Heterocigoto , Homocigoto , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Masculino , Datos de Secuencia Molecular , Linaje , S-Adenosilhomocisteína/sangre , Alineación de Secuencia , Transaminasas/sangre , Transaminasas/genética
8.
Mov Disord Clin Pract ; 10(1): 109-114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698992

RESUMEN

Background: Arginase 1 Deficiency (ARG1-D) is a rare autosomal recessive urea cycle disorder (UCD) characterized by pathologic elevation of plasma arginine and debilitating manifestations. Based on clinical commonalities and low disease awareness, ARG1-D can be diagnosed as hereditary spastic paraplegia (HSP), leading to treatment delays. Cases: A Hispanic woman with unremarkable medical history experienced progressive lower-limb spasticity in her 20s and received a diagnosis of HSP. She developed significant gait abnormalities and is unable to walk without assistance. More recently, two Hispanic brothers with childhood-onset manifestations including lower-limb spasticity, developmental delays, and seizures presented with suspected HSP. All three patients were ultimately diagnosed with ARG1-D based on plasma arginine several-fold above normal levels and loss-of-function ARG1 variants. Disease progression occurred before ARG1-D was correctly diagnosed. Literature Review: Retrospective analyses demonstrate that diagnostic delays in ARG1-D are common and can be lengthy. Because of clinical similarities between ARG1-D and HSP, such as insidious onset and progressive spasticity, accurate diagnosis of ARG1-D is challenging. Timely ARG1-D diagnosis is critical because this UCD is a treatable genetic cause of progressive lower-limb spasticity. Conclusions: Arginase 1 Deficiency should be considered in HSP differential diagnosis until biochemically/genetically excluded, and should be routinely included in HSP gene panels.

9.
JIMD Rep ; 64(6): 403-409, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37927481

RESUMEN

N-acetyl glutamate synthase (NAGS) deficiency (OMIM #: 237310) is a rare urea cycle disorder that usually presents early in life with hyperammonemia. NAGS catalyzes the synthesis of N-acetyl glutamate (NAG) which functions as an activator of the carbamoyl phosphate synthetase-1 mediated conversion of ammonia to carbamoyl phosphate. The absence of NAG results in a proximal urea cycle disorder which can result in severe neurologic sequelae secondary to hyperammonemia and even death. Unlike the other urea cycle disorders, a specific pharmacological treatment for NAGS deficiency exists in the form of carglumic acid, an analog of NAG. Here we present a 29-year-old previously healthy female who presented with hyperammonemia and obtundation just after the birth of her first child. Exome sequencing revealed two novel variants in the NAGS gene, and plasma metabolomics revealed extremely low levels of NAG. Carglumic acid treatment led to prompt resolution of her biochemical abnormalities and symptoms. She tolerated two subsequent pregnancies, 2 years and 6 years after her initial presentation, while taking carglumic acid, and breastfed her third child, all without complications in the mother or children. This case report emphasizes the importance of considering urea cycle disorders in previously-healthy adults presenting with neurological symptoms during periods of metabolic stress, including the postpartum period. It also highlights the efficacious and safe use of carglumic acid during pregnancy and while breastfeeding.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37709555

RESUMEN

Electron transport chain (ETC) disorders are a group of rare, multisystem diseases caused by impaired oxidative phosphorylation and energy production. Deficiencies in complex III (CIII), also known as ubiquinol-cytochrome c reductase, are particularly rare in humans. Ubiquinol-cytochrome c reductase core protein 2 (UQCRC2) encodes a subunit of CIII that plays a crucial role in dimerization. Several pathogenic UQCRC2 variants have been identified in patients presenting with metabolic abnormalities that include lactic acidosis, hyperammonemia, hypoglycemia, and organic aciduria. Almost all previously reported UQCRC2-deficient patients exhibited neurodevelopmental involvement, including developmental delays and structural brain anomalies. Here, we describe a girl who presented at 3 yr of age with lactic acidosis, hyperammonemia, and hypoglycemia but has not shown any evidence of neurodevelopmental dysfunction by age 15. Whole-exome sequencing revealed compound heterozygosity for two novel variants in UQCRC2: c.1189G>A; p.Gly397Arg and c.437T>C; p.Phe146Ser. Here, we discuss the patient's clinical presentation and the likely pathogenicity of these two missense variants.


Asunto(s)
Acidosis Láctica , Hiperamonemia , Hipoglucemia , Humanos , Femenino , Adolescente , Complejo III de Transporte de Electrones , Mutación Missense
11.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168314

RESUMEN

Metabolomic profiling is instrumental in understanding the systemic and cellular impact of inborn errors of metabolism (IEMs), monogenic disorders caused by pathogenic genomic variants in genes involved in metabolism. This study encompasses untargeted metabolomics analysis of plasma from 474 individuals and fibroblasts from 67 subjects, incorporating healthy controls, patients with 65 different monogenic diseases, and numerous undiagnosed cases. We introduce a web application designed for the in-depth exploration of this extensive metabolomics database. The application offers a user-friendly interface for data review, download, and detailed analysis of metabolic deviations linked to IEMs at the level of individual patients or groups of patients with the same diagnosis. It also provides interactive tools for investigating metabolic relationships and offers comparative analyses of plasma and fibroblast profiles. This tool emphasizes the metabolic interplay within and across biological matrices, enriching our understanding of metabolic regulation in health and disease. As a resource, the application provides broad utility in research, offering novel insights into metabolic pathways and their alterations in various disorders.

12.
Am J Med Genet A ; 158A(1): 206-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22106088

RESUMEN

Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36.


Asunto(s)
Cromosomas Humanos Par 7/genética , Mosaicismo , Recombinación Genética , Deleción Cromosómica , Inversión Cromosómica/genética , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Femenino , Estudios de Seguimiento , Humanos , Hibridación Fluorescente in Situ , Recién Nacido , Cariotipo , Meiosis , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Trisomía/genética
13.
Ther Adv Musculoskelet Dis ; 14: 1759720X221084848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342457

RESUMEN

Background: Achondroplasia is the most common short-limbed skeletal dysplasia resulting from gain-of-function pathogenic variants in fibroblast growth factor receptor 3 (FGFR3) gene, a negative regulator of endochondral bone formation. Most treatment options are symptomatic, targeting medical complications. Infigratinib is an orally bioavailable, FGFR1-3 selective tyrosine kinase inhibitor being investigated as a direct therapeutic strategy to counteract FGFR3 overactivity in achondroplasia. Objectives: The main objective of PROPEL is to collect baseline data of children with achondroplasia being considered for future enrollment in interventional studies sponsored by QED Therapeutics. The objectives of PROPEL 2 are to obtain preliminary evidence of safety and efficacy of oral infigratinib in children with achondroplasia, to identify the infigratinib dose to be explored in future studies, and to characterize the pharmacokinetic (PK) profile of infigratinib and major metabolites. Design: PROPEL (NCT04035811) is a prospective, noninterventional clinical study designed to characterize the natural history and collect baseline data of children with achondroplasia over 6-24 months. PROPEL 2 (NCT04265651), a prospective, phase II, open-label study of infigratinib in children with achondroplasia, consists of a dose-escalation, dose-finding, and dose-expansion phase to confirm the selected dose, and a PK substudy. Methods and analysis: Children aged 3-11 years with achondroplasia who completed ⩾6 months in PROPEL are eligible for PROPEL 2. Primary endpoints include treatment-emergent adverse events and change from baseline in annualized height velocity. Four cohorts at ascending dose levels are planned for dose escalation. The selected dose will be confirmed in the dose-expansion phase. Ethics: PROPEL and PROPEL 2 are being conducted in accordance with the International Conference on Harmonization Good Clinical Practice guidelines, principles of the Declaration of Helsinki, and relevant human clinical research and data privacy regulations. Protocols have been approved by local health authorities, ethics committees, and institutions as applicable. Parents/legally authorized representatives are required to provide signed informed consent; signed informed assent by the child is also required, where applicable. Discussion: PROPEL and PROPEL 2 will provide preliminary evidence of the safety and efficacy of infigratinib as precision treatment of children with achondroplasia and will inform the design of future studies of FGFR-targeted agents in achondroplasia. Registration: ClinicalTrials.gov: NCT04035811; NCT04265651.

14.
JAMA Netw Open ; 3(4): e203812, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32347949

RESUMEN

Importance: Discordance in the interpretations of genetic test results has occurred with the increased number of laboratories that are performing testing. Differences in diagnostic interpretations may have implications for the treatment of patients. Objective: To assess the interlaboratory variation in the interpretations of genetic test results with potential therapeutic implications. Design, Setting, and Participants: In this cross-sectional study, 70 genes that are commonly tested in patients with epilepsy were examined to identify 22 676 genetic variants from an unknown number of patients using the ClinVar public database of clinically annotated variants. Variant annotations submitted to ClinVar (data set version 2019-05) between November 16, 2012, and May 3, 2019, were included in the analysis. Conflicting interpretations of the genetic variants associated with epilepsy were analyzed for clinically substantial discrepancies between May 7 and June 29, 2019. Variants were examined only if they had been interpreted by 2 or more clinical laboratories. A variant with a clinically substantial difference in interpretation was defined as a variant that crossed the threshold between a likely pathogenic variant and a variant of uncertain significance. Main Outcomes and Measures: The frequency and types of variant interpretation conflicts were analyzed when a conflict was identified. Results: A total of 6292 of 22 676 variants related to epilepsy (27.7%) were interpreted by 2 or more clinical laboratories. Many variants (3307 of 6292 [52.6%]) had interpretations that were fully concordant. However, 2985 variants (47.4%) had conflicting interpretations. A clinically substantial conflict was identified in 201 of 6292 variants (3.2%). Furthermore, 117 of 201 variants (58.2%) with differences in interpretation occurred in genes with therapeutic implications. Conclusions and Relevance: In this cross-sectional study, most interpretations of genetic variants associated with epilepsy were concordant among laboratories, but more than half of the variants with conflicting interpretations occurred in genes that have therapeutic implications. It would be helpful for genetic laboratories to report known diagnostic discordance with other clinical laboratories.


Asunto(s)
Epilepsia/genética , Pruebas Genéticas/normas , Variación Genética , Estudios Transversales , Bases de Datos Factuales , Humanos
15.
JAMA Pediatr ; 173(1): e182302, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30398534

RESUMEN

Importance: Clinical genomic tests that examine the DNA sequence of large numbers of genes are commonly used in the diagnosis and management of epilepsy in pediatric patients. The permanence of genomic test result interpretations is not known. Objective: To investigate the value of reinterpreting previously reported genomic test results. Design, Setting, and Participants: This study retrospectively reviewed and reinterpreted genomic test results from July 1, 2012, to August 31, 2015, for pediatric patients who previously underwent genomic epilepsy testing at a single tertiary care pediatric health care facility. Reinterpretation of previously reported variants was conducted in May 2017. Main Outcomes and Measures: Patient reports from clinical genomic epilepsy tests were reviewed, and all reported genetic variants were reinterpreted using 2015 consensus standards and guidelines for interpreting hereditary genetic variants. Three classification tiers were used in the reinterpretation: pathogenic or likely pathogenic variant, variant of uncertain significance (VUS), or benign or likely benign variant. Results: A total of 309 patients had genomic epilepsy tests performed (mean [SD] age, 5.6 [0.8] years; 163 [52.8%] male), and 185 patients had a genetic variant reported. The reported variants resulted in 61 patients with and 124 patients without a genetic diagnosis (VUS variants only). On reinterpretation of all reported variants, 67 of the 185 patients (36.2%) had a change in variant classification. Of the 67 patients with a genetic variant change in interpretation, 21 (31.3%) experienced a change in diagnosis. During the 5 years of the study, 19 of 61 patients (31.1%) with a genetic diagnosis and 48 of 124 patients (38.7%) with undiagnosed conditions (VUS only) had their results reclassified. Review of genomic reports issued during the final 2 years of the study identified reclassification of variants in 4 of 16 patients (25.0%) with a pathogenic or likely pathogenic variant and 11 of 41 patients (26.8%) with a VUS. Conclusions and Relevance: The identified high rate of reinterpretation in this study suggests that interpretation of genomic test results has rapidly evolved during the past 5 years. These findings suggest that reinterpretation of genomic test results should be performed at least every 2 years.


Asunto(s)
Epilepsia/diagnóstico , Pruebas Genéticas/métodos , Adolescente , Niño , Preescolar , Epilepsia/clasificación , Epilepsia/genética , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Pruebas Genéticas/normas , Genómica , Humanos , Lactante , Modelos Lineales , Masculino , Guías de Práctica Clínica como Asunto , Estudios Retrospectivos
16.
Cell Rep ; 27(5): 1376-1386.e6, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042466

RESUMEN

Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knockin of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology.


Asunto(s)
Acidosis Láctica/metabolismo , Aciltransferasas/genética , Mutación con Pérdida de Función , Acidosis Láctica/genética , Acidosis Láctica/patología , Aciltransferasas/metabolismo , Animales , Células Cultivadas , Niño , Ácidos Grasos/metabolismo , Femenino , Fibroblastos/metabolismo , Glutamina/metabolismo , Glutaratos/metabolismo , Humanos , Lipogénesis , Lipoilación , Masculino , Ratones , Oxígeno/metabolismo
17.
Orphanet J Rare Dis ; 10: 99, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26289392

RESUMEN

BACKGROUND: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine ß-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities. PURPOSE OF THE STUDY: The goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence. RESULTS AND DISCUSSION: The results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 µM or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Heterocigoto , Homocigoto , Metionina Adenosiltransferasa/genética , Adolescente , Adulto , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
18.
Spine Deform ; 2(5): 324-332, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27927329

RESUMEN

STUDY DESIGN: To test for rare genetic mutations, a cohort of patients with unexplained early-onset scoliosis (EOS) was screened using high-density microarray genotyping. A cohort of patients with adolescent idiopathic scoliosis (AIS) was similarly screened and the results were compared. SUMMARY OF BACKGROUND DATA: Patients with scoliosis in infancy or early childhood (EOS) are at high risk for progressive deformity and associated problems including respiratory compromise. Early-onset scoliosis is frequently associated with genetic disorders but many patients present with nonspecific clinical features and without an associated diagnosis. The authors hypothesized that EOS in these patients may be caused by rare genetic mutations detectable by next-generation genomic methods. METHODS: The researchers identified 24 patients with unexplained EOS from pediatric orthopedic clinics. They genotyped them, along with 39 connecting family members, using the Illumina OmniExpress-12, version 1.0 beadchip. Resulting genotypes were analyzed for chromosomal changes, specifically copy number variation and absence of heterozygosity. They screened 482 adolescent idiopathic scoliosis (AIS) patients and 744 healthy controls, who were similarly genotyped with the same beadchip, for chromosomal changes identified in the EOS cohort. RESULTS: Copy number variation and absence of heterozygosity analyses revealed a genetic diagnosis of chromosome 15q24 microdeletion syndrome in 1 patient and maternal uniparental disomy of chromosome 14 in a second one. Prior genetic testing and clinical evaluations had been negative in both cases. A large novel chromosome 10 deletion was likely causal in a third EOS patient. These mutations identified in the EOS patients were absent in AIS patients and controls, and thus were not associated with AIS or found in asymptomatic individuals. CONCLUSIONS: These data underscore the usefulness of updated genetic evaluations including high-density microarray-based genotyping and other next-generation methods in patients with unexplained EOS, even when prior genetic studies were negative. These data also suggest the intriguing possibility that other mutations detectable by whole genome sequencing, as well as epigenetic effects, await discovery in the EOS population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA