Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958416

RESUMEN

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.

2.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38836784

RESUMEN

A number of internal rotation codes can deal with the combination of one or two internal rotors with one 14N quadrupole nucleus, but once it comes to two 14N nuclei, no such code is available even for the case of one internal rotor. We present here the extension of our internal rotor program called BELGI-2N using the rho-axis method global approach to deal with compounds containing one methyl rotor and two weakly coupling 14N nuclei. To test our new code, we applied it to the microwave data recorded for N-methylimidazole, 2-methylimidazole, 4-methylimidazole, and 5-methylimidazole using a chirped-pulse Fourier transform microwave spectrometer in the 7.0-18.5 GHz frequency range. Compared to the previously published study, BELGI-2N was able to (i) significantly increase the number of assigned and fitted lines, (ii) fit the complete datasets considering both the internal rotation and the 14N nuclear quadrupole coupling effects simultaneously, and (iii) achieve standard deviations within the measurement accuracy for all methylimidazole isomers.

3.
J Chem Phys ; 158(11): 114307, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36948828

RESUMEN

Two isomers of a complex formed between thiazole and two water molecules, thi⋯(H2O)2, have been identified through Fourier transform microwave spectroscopy between 7.0 and 18.5 GHz. The complex was generated by the co-expansion of a gas sample containing trace amounts of thiazole and water in an inert buffer gas. For each isomer, rotational constants, A0, B0, and C0; centrifugal distortion constants, DJ, DJK, d1, and d2; and nuclear quadrupole coupling constants, χaa(N) and [χbb(N) - χcc(N)], have been determined through fitting of a rotational Hamiltonian to the frequencies of observed transitions. The molecular geometry, energy, and components of the dipole moment of each isomer have been calculated using Density Functional Theory (DFT). The experimental results for four isotopologues of isomer I allow for accurate determinations of atomic coordinates of oxygen atoms by r0 and rs methods. Isomer II has been assigned as the carrier of an observed spectrum on the basis of very good agreement between DFT-calculated results and a set of spectroscopic parameters (including A0, B0, and C0 rotational constants) determined by fitting to measured transition frequencies. Non-covalent interaction and natural bond orbital analyses reveal that two strong hydrogen bonding interactions are present within each of the identified isomers of thi⋯(H2O)2. The first of these binds H2O to the nitrogen of thiazole (OH⋯N), and the second binds the two water molecules (OH⋯O). A third, weaker interaction binds the H2O sub-unit to the hydrogen atom that is attached to C2 (for isomer I) or C4 (for isomer II) of the thiazole ring (CH⋯O).

4.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37125715

RESUMEN

Naphthalene and azulene are isomeric polycyclic aromatic hydrocarbons (PAHs) and are topical in the context of astrochemistry due to the recent discovery of substituted naphthalenes in the Taurus Molecular Cloud-1 (TMC-1). Here, the thermal- and photo-induced isomerization, dissociation, and radiative cooling dynamics of energized (vibrationally hot) naphthalene (Np+) and azulene (Az+) radical cations, occurring over the microsecond to seconds timescale, are investigated using a cryogenic electrostatic ion storage ring, affording "molecular cloud in a box" conditions. Measurement of the cooling dynamics and kinetic energy release distributions for neutrals formed through dissociation, until several seconds after hot ion formation, are consistent with the establishment of a rapid (sub-microsecond) Np+ ⇌ Az+ quasi-equilibrium. Consequently, dissociation by C2H2-elimination proceeds predominantly through common Az+ decomposition pathways. Simulation of the isomerization, dissociation, recurrent fluorescence, and infrared cooling dynamics using a coupled master equation combined with high-level potential energy surface calculations [CCSD(T)/cc-pVTZ], reproduce the trends in the measurements. The data show that radiative cooling via recurrent fluorescence, predominately through the Np+ D0 ← D2 transition, efficiently quenches dissociation for vibrational energies up to ≈1 eV above dissociation thresholds. Our measurements support the suggestion that small cations, such as naphthalene, may be more abundant in space than previously thought. The strategy presented in this work could be extended to fingerprint the cooling dynamics of other PAH ions for which isomerization is predicted to precede dissociation.

5.
Phys Chem Chem Phys ; 24(20): 12354-12362, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35551286

RESUMEN

Broadband microwave spectra have been recorded between 7.0 and 18.5 GHz for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O complexes. Each complex was generated by co-expansion of low concentrations of methylimidazole and H2O in argon buffer gas. The rotational spectra of five isotopologues of each complex have been assigned and analysed to determine rotational constants (A0, B0, C0), centrifugal distortion constants (DJ, DJK) and parameters that describe the internal rotation of the CH3 group. The results allow the determination of parameters in the (r0) molecular geometry of each complex. H2O is the hydrogen bond donor and the pyridinic nitrogen of imidazole is the hydrogen bond acceptor in each case. The ∠(O-Hb⋯N3) angles are 177(5)° and 166.3(28)° for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O respectively. These results are consistent with the presence of a weak electrostatic interaction between the oxygen atom of H2O and the hydrogen atom (or CH3 group) attached to the C2 carbon atom of imidazole, and with the results of density functional theory calculations. The (V3) barrier to internal rotation of the CH3 group within N-methylimidazole⋯H2O is essentially unchanged from the value of this parameter for the N-methylimidazole monomer. The same parameter is significantly higher for the 2-methylimidazole⋯H2O complex than for the 2-methylimidazole monomer as a consequence of the weak electrostatic interaction between the O atom and the CH3 group of 2-methylimidazole.

6.
J Phys Chem A ; 124(13): 2649-2659, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32141751

RESUMEN

Laser vaporization of imidazole in the presence of an argon buffer gas has allowed the generation and isolation of two isomers of an imidazole monohydrate complex, denoted herein as imid···H2O and H2O···imid, within a gas sample undergoing supersonic expansion. Imidazole and water are respectively proton-accepting and proton-donating in imid···H2O, but these roles are reversed in the H2O···imid complex. Both isomers have been characterized by chirped-pulse Fourier transform microwave spectroscopy between 7.0 and 18.5 GHz. The ground-state rotational spectra of four isotopologues of imid···H2O and three isotopologues of H2O···imid have been measured. All spectra have been assigned and fitted to determine rotational (A0, B0, C0), centrifugal distortion (DJ, DJK), and nuclear quadrupole coupling constants (χaa(N1), [χbb(N1) - χcc(N1)], χaa(N3), and [χbb(N3) - χcc(N3)]). Structural parameters (r0 and rs) have been accurately determined from measured rotational constants for each isomer. The imid···H2O complex contains a nonlinear hydrogen bond (∠(O-Hb···N3) = 172.1(26)° in the experimentally determined, r0 geometry) between the pyridinic nitrogen of imidazole and a hydrogen atom of H2O. The DFT calculations find that the H2O···imid complex also contains a nonlinear hydrogen bond between the oxygen atom of water and the hydrogen attached to the pyrrolic nitrogen of imidazole (∠(O···H1-N1) = 174.7°). Two states observed in the spectrum of H2O···imid, assigned as 0- and 0+ states, confirm that large amplitude motions occur on the time scale of the molecular rotation. Density functional theory has been performed to characterize these large amplitude motions.

7.
Phys Chem Chem Phys ; 21(18): 9495-9503, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31016310

RESUMEN

Rotational spectra have been measured and assigned for four conformers of trans-urocanic acid. The acid was transferred into the gas phase through laser vaporisation of a solid sample, mixed with a neon buffer gas and then cooled through supersonic expansion. Molecules and complexes in the expanding gas jet were probed through chirped-pulse, Fourier transform microwave spectroscopy between 2.0 and 18.5 GHz. Rotational constants, A0, B0 and C0; centrifugal distortion constants, ΔJ and ΔJK; and nuclear quadrupole coupling constants of the nitrogen atoms, χaa(N) and χbb(N)-χcc(N), were determined for the various conformers. Data were obtained for ten isotopologues of the conformer that was observed to yield the spectrum of highest intensity. Substitution (rs) coordinates were determined for all carbon atoms and two hydrogen atoms of this conformer. Other observed spectra were assigned to conformers on the basis of excellent agreement between calculated and experimentally-determined rotational constants, and empirical observations of the relative intensities of a- and b-type transitions. The results of DFT calculations imply high barriers to the interconversion of assigned conformers.

8.
J Chem Phys ; 151(14): 144301, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615258

RESUMEN

The rotational spectra of N-, 2-, 4-, and 5-methylimidazole are reported and analyzed. Liquid N-methylimidazole was vaporized from a reservoir, and each of 2-, 4-, and 5-methylimidazole was laser-vaporized from a solid target prior to mixing with argon buffer gas and undergoing supersonic expansion from a pulsed nozzle. The spectra were recorded by chirped-pulse Fourier transform microwave spectroscopy in the 7.0-18.5 GHz frequency range. Rotational constants, A0, B0, and C0, centrifugal distortion constants, DJ, DJK, DK, d1, and d2, and nuclear quadrupole coupling constants of nitrogen atoms, χaa(N1), χbb(N1) - χcc(N1), χaa(N3), and χbb(N3) - χcc(N3), are determined from experimentally measured transition frequencies. Data recorded for isotopologues containing 13C or 15N are used to determine the rs coordinates of all heavy atoms in N-, 2-, and 4-methylimidazole. The results allow fitting of parameters in the Hamiltonian that describes internal rotation of the CH3 group about its local C3 axis. The V3 terms in the periodic potential energy functions that describe the internal rotation in N-, 2-, 4-, and 5-methylimidazole are determined to be 185.104(11), 122.7529(38), 317.20(14), and 386.001(19) cm-1, respectively, by the internal axis method. The experiments are supported by density functional theory calculations. Observed variations in barrier height are explained with reference to the symmetry of overlap between a π-like orbital on the CH3 group and π-orbitals on the aromatic ring.

9.
J Chem Phys ; 150(8): 084307, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823758

RESUMEN

Ground-state rotational spectra were observed for ten symmetric-top isotopologues H3N⋯S=C=S, H3N⋯34S=C=S, H3N⋯S=C=34S, H3N⋯S=13C=S, H3 15N⋯S=C=S, H3 15N⋯34S=C=S, H3 15N⋯S=C=34S, H3 15N⋯S=13C=S, H3 15N⋯33S=C=S, and H3 15N⋯S=C=33S, the first five in their natural abundance in a mixture of ammonia and carbon disulphide in argon and the second group with enriched 15NH3. The four asymmetric-rotor isotopomers H2DN⋯S=C=S, H2DN⋯34S=C=S, H2DN⋯S=C=34S, and HD2N⋯S=C=S were investigated by using a sample composed of ND3 mixed with CS2. Rotational constants, centrifugal distortion constants, and 33S nuclear quadrupole coupling constants were determined from spectral analyses and were interpreted with the aid of models of the complex to determine its symmetry, geometry, one measure of the strength of the intermolecular binding, and information about the subunit dynamics. The complex has C3v symmetry, with nuclei in the order H3N⋯S=C=S, thereby establishing that the non-covalent interaction is a chalcogen bond involving the non-bonding electron pair of ammonia as the nucleophile and the axial region near one of the S atoms as the electrophile. The small intermolecular stretching force constant kσ = 3.95(5) N m-1 indicates a weak interaction and suggests the assumption of unperturbed component geometries on complex formation. A simple model used to account for the contribution of the subunit angular oscillations to the zero-point motion leads to the intermolecular bond length r(N⋯S) = 3.338(10) Å.

10.
J Chem Phys ; 147(23): 234308, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29272951

RESUMEN

The rotational spectra of H3N⋯AgI and H2O⋯AgI have been recorded between 6.5 and 18.5 GHz by chirped-pulse Fourier-transform microwave spectroscopy. The complexes were generated through laser vaporisation of a solid target of silver or silver iodide in the presence of an argon gas pulse containing a low concentration of the Lewis base. The gaseous sample subsequently undergoes supersonic expansion which results in cooling of rotational and vibrational motions such that weakly bound complexes can form within the expanding gas jet. Spectroscopic parameters have been determined for eight isotopologues of H3N⋯AgI and six isotopologues of H2O⋯AgI. Rotational constants, B0; centrifugal distortion constants, DJ, DJK or ΔJ, ΔJK; and the nuclear quadrupole coupling constants, χaa(I) and χbb(I) - χcc(I) are reported. H3N⋯AgI is shown to adopt a geometry that has C3v symmetry. The geometry of H2O⋯AgI is Cs at equilibrium but with a low barrier to inversion such that the vibrational wavefunction for the v = 0 state has C2v symmetry. Trends in the nuclear quadrupole coupling constant of the iodine nucleus, χaa(I), of L⋯AgI complexes are examined, where L is varied across the series (L = Ar, H3N, H2O, H2S, H3P, or CO). The results of experiments are reported alongside those of ab initio calculations at the CCSD(T)(F12*)/AVXZ level (X = T, Q).

11.
J Phys Chem Lett ; 14(31): 7126-7133, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37534743

RESUMEN

Recent developments in X-ray free-electron lasers have enabled a novel site-selective probe of coupled nuclear and electronic dynamics in photoexcited molecules, time-resolved X-ray photoelectron spectroscopy (TRXPS). We present results from a joint experimental and theoretical TRXPS study of the well-characterized ultraviolet photodissociation of CS2, a prototypical system for understanding non-adiabatic dynamics. These results demonstrate that the sulfur 2p binding energy is sensitive to changes in the nuclear structure following photoexcitation, which ultimately leads to dissociation into CS and S photoproducts. We are able to assign the main X-ray spectroscopic features to the CS and S products via comparison to a first-principles determination of the TRXPS based on ab initio multiple-spawning simulations. Our results demonstrate the use of TRXPS as a local probe of complex ultrafast photodissociation dynamics involving multimodal vibrational coupling, nonradiative transitions between electronic states, and multiple final product channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA